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Conway topograph and Farey fractions

The Conway topograph (J.H. Conway 1991) consists of the planar domains
which are connected components of the complement to а trivalent tree
imbedded in the plane. These domains were originally labelled by the "lax
vectors" in the integer lattice Z2, but can be equivalently labelled by the
rationals using Farey mediant
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Figure: The Conway-Farey tree of fractions between 0 and 1.
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Markov fractions

The Markov fraction tree is the modification of the Conway-Farey tree, where
the Farey mediant is replaced by the Springborn mediant
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Figure: The Markov fraction tree with the Springborn local rule.
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Markov fractions

By definition, the Markov fractions between 0 and 1/2 (denoted as MFR) are
defined recursively using the Springborn rule, starting from 0

1 and 1
2 .

Juxtaposition with the Conway-Farey tree establishes the Springborn bijection

µ : Q ∩ [0, 1] → MFR ,

which is a version of Frobenius parametrisation of Markov numbers.

By definition the function µ(x) satisfies the property

µ
( a

b
⊕ c

d

)
= µ

( a

b

)
∗ µ

( c

d

)
, |ad − bc| = 1,

intertwining Farey and Sprinborn mediants of neighbours on the Farey tree.
The set of all Markov fractions is defined as

MF := {n ± p

q
,

p

q
∈ MFR , n ∈ Z}.

The reduced set MFR = MF ∩ [0, 1/2] is a fundamental domain of the
natural action on MF of the integer affine group Aff1(Z): x → n ± x .
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Markov fraction tree

158 B. Springborn / Journal of Number Theory 263 (2024) 153–205
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Fig. 3. Markov fractions in the interval [0, 1
2 ]. Numerical values are shown in the right column.
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Markov triples

Markov triples (Markov 1880) are the positive integer solutions of the Markov
equation

q2
1 + q2

2 + q2
3 = 3q1q2q3.

They can be found from the obvious solution (1, 1, 1) by applying permutations
and Vieta involution (q1, q2, q3) → (q1, q2, q

′
3) where

q′
3 = 3q1q2 − q3 =

q2
1 + q2
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Figure: Markov numbers on the Conway topograph.
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Markov spectrum of real numbers

Markov constant µ(α) is a measure of irrationality of α ∈ R defined as

µ(α) := lim inf
b→∞

(
b2 min

a∈Z

∣∣∣α− a

b

∣∣∣) .

The set of all possible values of µ(α), α ∈ R is the Lagrange spectrum.

Markov (1880): Lagrange spectrum above 1/3 is discrete and consists of

µ =
m√

9m2 − 4
,

where m is one of the Markov numbers:

m = 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...

In other words, Markov triples describe the "most irrational numbers"

α =
b

q1
+

q2

q1q3
− 3

2
+

√
9q2

3 − 4
2q3

, bq2 − aq1 = q3.

Unicity Conjecture (Frobenius, 1913) Every Markov number appears as
maximal only in one Markov triple (so Markov spectrum is simple).
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Markov fractions and Markov numbers

Springborn 2024 introduced the Markov fractions as "the worst approximable
rational numbers" with corresponding

C

(
p

q

)
:= inf

a
b
∈Q\

{
p
q

} b2
∣∣∣∣pq − a

b

∣∣∣∣ ≥ 1
3
.

p1
q1

p2
q2

p3
q3

p′2
q′2

p′1
q′1

1

Key Lemma. The numbers on Markov fraction tree satisfy the relations

p2q3 − p3q2 = q1, p3q1 − p1q3 = q2, p2q1 − p1q2 =
q2

1 + q2
2

q3
,

p′
1 =

p2q2 + p3q3

q1
, q′

1 =
q2

2 + q2
3

q1
, p′

2 =
p1q1 + p3q3

q2
, q′

2 =
q2

1 + q2
3

q2
.

The denominators q of Markov fractions are Markov numbers.
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Bottom right branch: Fibonacci fractions
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The bottom right branch of Markov fraction tree: 1
2 ,

2
5 ,

5
13 ,

13
34 ,

34
89 ,

89
233 . . .

consists of the ratios pk/qk = F2k/F2k+2 of the consecutive even Fibonacci
numbers

Fk = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .
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Bottom left branch: Pell fractions
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Pell numbers (xn, yn) are solutions of Pell’s equations x2 − 2y2 = (−1)n :

(1, 1), (3, 2), (7, 5), 17, 12), (41, 29), (99, 70), (239, 169), (577, 408), (1393, 985), . . .

The corresponding Markov-Pell fractions are the ratios pk/qk = y2k/y2k+1 of
the consecutive Pell numbers defined by yn+1 = 2yn + yn−1, y1 = 1, y2 = 2,

yk = 1, 2, 5, 12, 29, 70, 169, 408, 985, . . . .
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Springborn function

The Springborn function µ(x) is defined by the property

µ
( a

b
⊕ c

d

)
= µ

( a

b

)
∗ µ

( c

d

)
, |ad − bc| = 1.

Springborn 2024: The extension of this function to real x ∈ [0, 1] is continuous
at irrational x and at rational x with µ(x) = p/q has jump l = 3 −

√
9 − 4/q2.

In particular, I =
[
p
q
− 1

2 l(q),
p
q
+ 1

2 l(q)
]

is the maximal interval around p/q,
which is free of other Markov fractions.

Figure: The first few values of µ(x) with vertical lines indicating the jumps
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Saltus representation

APV 2025: Springborn function coincides with its saltus function:

µ(x) = sµ(x) := −1
2
l(1) +

∑
a/b∈Q∩[0,1]

l
(
q
( a

b

))
H
(
x − a

b

)
,

where q( a
b
) is the Markov number and H(x) is the Heaviside step function.

The proof follows from the McShane identity, which can be written as

1
2
(l(1) + l(2)) +

∑
q∈M, q>2

l(q) =
1
2
,

where M is the set of all Markov numbers.

Corollary
The derivative µ′(x) = 0 almost everywhere.
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Exceptional vector bundles on P2

Let E be an algebraic vector bundle on complex projective plane P2 of rank r
with the Chern classes c1 and c2. Since H2(P2) ∼= Z and H4(P2) ∼= Z we can
consider c1 and c2 as integers. The slope of E is defined as the ratio

µ(E) :=
c1

r
.

The bundle E is called stable if for any proper sub-sheaf F ⊂ E we have

µ(F ) < µ(E)

and rigid if Ext1(E ,E) = 0. The vector bundles, which are both stable and
rigid, are called exceptional. They can also be defined by the conditions

Hom(E ,E) = C, Ext i (E ,E) = 0, i > 0.

Drèzet and Le Potier 1984: The exceptional vector bundles E on P2 are
uniquely determines by the slope µ(E).

The main question is to describe the set E of all possible slopes of the
exceptional bundles (called exceptional slopes).
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Exceptional slopes and Markov fractions

Drèzet and Le Potier 1984: Тhe set E is the image of the special function
ϵ : D → Q, where D is the set of dyadic (binary) rationals m/2n.

This function has the properties ϵ(−x) = −ϵ(x), ϵ(x + n) = ϵ(x) + n, n ∈ Z
and is uniquely defined by the condition: if ϵ

(
m
2n
)
= p1

q1
, ϵ

(
m+1
2n

)
= p2

q2
, then

p3

q3
:= ϵ

(
2m + 1
2n+1

)
=

1
2

(
p1

q1
+

p2

q2
+

q−2
1 − q−2

2

p1/q1 − p2/q2 + 3

)
.

APV 2025: The set E of slopes of the exceptional bundles on P2 coincides with
the set of all Markov fractions.

The key observation is that the Drèzet-Le Potier defining relation for
p1/q1 < p2/q2 is equivalent to the Springborn mediant rule:

1
2

(
p1

q1
+

p2

q2
+

q−2
1 − q−2

2

p1/q1 − p2/q2 + 3

)
=

p1q1 + p2q2

q2
1 + q2

2
.

Corollary (Rudakov 1988) The ranks of the exceptional vector bundles on P2

are Markov numbers.
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Exceptional slopes and Markov fractions

Drèzet and Le Potier 1984: Тhe set E is the image of the special function
ϵ : D → Q, where D is the set of dyadic (binary) rationals m/2n.

This function has the properties ϵ(−x) = −ϵ(x), ϵ(x + n) = ϵ(x) + n, n ∈ Z
and is uniquely defined by the condition: if ϵ

(
m
2n
)
= p1

q1
, ϵ

(
m+1
2n

)
= p2

q2
, then

p3

q3
:= ϵ

(
2m + 1
2n+1

)
=

1
2

(
p1

q1
+

p2

q2
+

q−2
1 − q−2

2

p1/q1 − p2/q2 + 3

)
.

APV 2025: The set E of slopes of the exceptional bundles on P2 coincides with
the set of all Markov fractions.

The key observation is that the Drèzet-Le Potier defining relation for
p1/q1 < p2/q2 is equivalent to the Springborn mediant rule:
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+
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+
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1 − q−2

2

p1/q1 − p2/q2 + 3

)
=

p1q1 + p2q2

q2
1 + q2

2
.

Corollary (Rudakov 1988) The ranks of the exceptional vector bundles on P2

are Markov numbers.
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Unicity conjecture

The celebrated Unicity conjecture claims that any Markov triple is uniquely
determined by its maximal part. Springborn reformulated it as the following

Conjecture 1. For any Markov number q there exists unique Markov fraction
0 ≤ p

q
≤ 1

2 .

Modulo our results we can reformulate the Unicity conjecture as

Conjecture 2. Every exceptional bundle E on P2 is determined by its rank
uniquely modulo E → E∗,E → E ⊗ O(n).

Note that for any Markov fraction p/q we have the quadratic congruence

p2 + 1 ≡ 0 (mod q).

For prime q it has a unique (up to a sign) solution, so both conjectures hold
true in this case (Baragar 1996).

For example, for Markov fraction 15571
37666 with 37666 = 2 × 37 × 509 the

congruence x2 + 1 ≡ 0 (mod 37666) has 4 solutions x ≡ ±2337, ±15571.

Can we "characterise" the particular solution given by the numerator p of the
Markov fraction for composite q?
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Second Chern class and Markov form

By Riemann-Roch theorem the second Chern class c2(E) of the exceptional
bundle E can be computed in terms of p = c1(E), q = r(E) as

c2(E) =
1
2
(q − 1)(s + 1), s =

p2 + 1
q

.

It is interesting that the Markov binary quadratic form can be written in these
terms as

f (x , y) = qx2 + (3q − 2p)xy + (s − 3p)y2.

The roots of the quadratic equation

f (α, 1) = qα2 + (3q − 2p)α+ (s − 3p) = 0

are Markov irrationalities, which are limit points of the set of Markov fractions.
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Exceptional bundles on del Pezzo surfaces

Rudakov 1988: the exceptional collections on quadrics P1 × P1 have ranks
(x , y , z) satisfying the Diophantine equation

x2 + y2 + 2z2 = 4xyz

with all positive solutions derived by mutations from (1, 1, 1).

Karpov and Nogin 1989: generalisation to other del Pezzo surfaces S known to
be isomorphic to either P1 × P1, or to Xm being the plane P2 blown up in m
generic points with 0 ≤ m ≤ 8. In particular, for X3 we have the Diophantine
equation

x2 + 2y2 + 3z2 = 6xyz

with all positive solutions derived by mutations from (1, 1, 1).

What are the corresponding exceptional slopes in the del Pezzo cases?
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