Markov fractions and slopes of exceptional bundles on \mathbb{P}^2

A.P. Veselov Loughborough University, UK

"Algebraic geometry, integrable systems and automorphic forms", Lille, May 28, 2025

Plan

- ► Markov fractions and their properties
- ightharpoonup Exceptional vector bundles on \mathbb{P}^2
- Markov fractions as exceptional slopes
- Discussion

Reference

A.P. Veselov Markov fractions and the slopes of the exceptional bundles on \mathbb{P}^2 . arXiv:2501.06779.

Conway topograph and Farey fractions

The Conway topograph (J.H. Conway 1991) consists of the planar domains which are connected components of the complement to a trivalent tree imbedded in the plane. These domains were originally labelled by the "lax vectors" in the integer lattice \mathbb{Z}^2 , but can be equivalently labelled by the rationals using Farey mediant

$$\frac{a_1}{b_1} \oplus \frac{a_2}{b_2} = \frac{a_1 + a_2}{b_1 + b_2}.$$

Conway topograph and Farey fractions

The Conway topograph (J.H. Conway 1991) consists of the planar domains which are connected components of the complement to a trivalent tree imbedded in the plane. These domains were originally labelled by the "lax vectors" in the integer lattice \mathbb{Z}^2 , but can be equivalently labelled by the rationals using Farey mediant

$$\frac{a_1}{b_1} \oplus \frac{a_2}{b_2} = \frac{a_1 + a_2}{b_1 + b_2}.$$

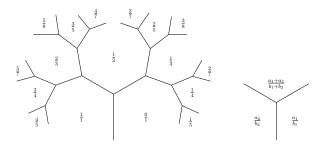


Figure: The Conway-Farey tree of fractions between 0 and 1.

The Markov fraction tree is the modification of the Conway-Farey tree, where the Farey mediant is replaced by the Springborn mediant

$$\frac{p_1}{q_1} * \frac{p_2}{q_2} = \frac{p_1 q_1 + p_2 q_2}{q_1^2 + q_2^2},$$

or, in the reduced form,

$$\frac{p_1}{q_1} * \frac{p_2}{q_2} = \frac{p}{q}, \quad p = \frac{p_1 q_1 + p_2 q_2}{p_2 q_1 - p_1 q_2}, \quad q = \frac{q_1^2 + q_2^2}{p_2 q_1 - p_1 q_2}.$$

The Markov fraction tree is the modification of the Conway-Farey tree, where the Farey mediant is replaced by the Springborn mediant

$$\frac{p_1}{q_1} * \frac{p_2}{q_2} = \frac{p_1 q_1 + p_2 q_2}{q_1^2 + q_2^2},$$

or, in the reduced form,

$$\frac{p_1}{q_1} * \frac{p_2}{q_2} = \frac{p}{q}, \quad p = \frac{p_1 q_1 + p_2 q_2}{p_2 q_1 - p_1 q_2}, \quad q = \frac{q_1^2 + q_2^2}{p_2 q_1 - p_1 q_2}.$$

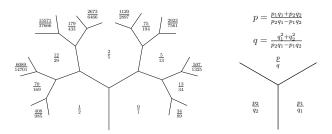


Figure: The Markov fraction tree with the Springborn local rule.

By definition, the Markov fractions between 0 and 1/2 (denoted as \mathcal{MF}_R) are defined recursively using the Springborn rule, starting from $\frac{0}{1}$ and $\frac{1}{2}$. Juxtaposition with the Conway-Farey tree establishes the Springborn bijection

$$\mu: \mathbb{Q} \cap [0,1] \to \mathcal{MF}_R$$
,

which is a version of Frobenius parametrisation of Markov numbers.

By definition, the Markov fractions between 0 and 1/2 (denoted as \mathcal{MF}_R) are defined recursively using the Springborn rule, starting from $\frac{0}{1}$ and $\frac{1}{2}$. Juxtaposition with the Conway-Farey tree establishes the Springborn bijection

$$\mu: \mathbb{Q} \cap [0,1] \to \mathcal{MF}_R$$
,

which is a version of Frobenius parametrisation of Markov numbers.

By definition the function $\mu(x)$ satisfies the property

$$\mu\left(rac{a}{b}\oplusrac{c}{d}
ight)=\mu\left(rac{a}{b}
ight)*\mu\left(rac{c}{d}
ight),\quad |ad-bc|=1,$$

intertwining Farey and Sprinborn mediants of neighbours on the Farey tree. The set of all *Markov fractions* is defined as

$$\mathcal{MF} := \{ n \pm \frac{p}{q}, \quad \frac{p}{q} \in \mathcal{MF}_R, \ n \in \mathbb{Z} \}.$$

The reduced set $\mathcal{MF}_R = \mathcal{MF} \cap [0,1/2]$ is a fundamental domain of the natural action on \mathcal{MF} of the integer affine group $\mathit{Aff}_1(\mathbb{Z}) \colon x \to n \pm x$.

Markov fraction tree

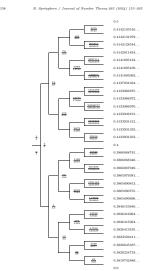


Fig. 3. Markov fractions in the interval $[0,\frac{1}{2}]$. Numerical values are shown in the right column.

Markov triples

Markov triples (Markov 1880) are the positive integer solutions of the Markov equation

$$q_1^2 + q_2^2 + q_3^2 = 3q_1q_2q_3.$$

They can be found from the obvious solution (1,1,1) by applying permutations and Vieta involution $(q_1,q_2,q_3) \rightarrow (q_1,q_2,q_3')$ where

$$q_3' = 3q_1q_2 - q_3 = \frac{q_1^2 + q_2^2}{q_3}.$$

Markov triples

Markov triples (Markov 1880) are the positive integer solutions of the Markov equation

$$q_1^2 + q_2^2 + q_3^2 = 3q_1q_2q_3.$$

They can be found from the obvious solution (1,1,1) by applying permutations and Vieta involution $(q_1,q_2,q_3) \rightarrow (q_1,q_2,q_3')$ where

$$q_3' = 3q_1q_2 - q_3 = \frac{q_1^2 + q_2^2}{q_3}.$$

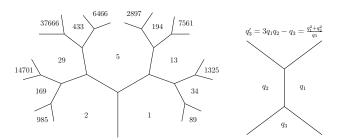


Figure: Markov numbers on the Conway topograph.

Markov spectrum of real numbers

Markov constant $\mu(\alpha)$ is a measure of irrationality of $\alpha \in \mathbb{R}$ defined as

$$\mu(\alpha) := \liminf_{b \to \infty} \left(b^2 \min_{a \in \mathbb{Z}} \left| \alpha - \frac{a}{b} \right| \right).$$

The set of all possible values of $\mu(\alpha)$, $\alpha \in \mathbb{R}$ is the Lagrange spectrum.

Markov spectrum of real numbers

Markov constant $\mu(\alpha)$ is a measure of irrationality of $\alpha \in \mathbb{R}$ defined as

$$\mu(\alpha) := \liminf_{b \to \infty} \left(b^2 \min_{a \in \mathbb{Z}} \left| \alpha - \frac{a}{b} \right| \right).$$

The set of all possible values of $\mu(\alpha)$, $\alpha \in \mathbb{R}$ is the Lagrange spectrum.

Markov (1880): Lagrange spectrum above 1/3 is discrete and consists of

$$\mu = \frac{m}{\sqrt{9m^2 - 4}},$$

where *m* is one of the Markov numbers:

$$m = 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...$$

In other words, Markov triples describe the "most irrational numbers"

$$\alpha = \frac{b}{q_1} + \frac{q_2}{q_1 q_3} - \frac{3}{2} + \frac{\sqrt{9q_3^2 - 4}}{2q_3}, \quad bq_2 - aq_1 = q_3.$$

Markov spectrum of real numbers

Markov constant $\mu(\alpha)$ is a measure of irrationality of $\alpha \in \mathbb{R}$ defined as

$$\mu(\alpha) := \liminf_{b \to \infty} \left(b^2 \min_{a \in \mathbb{Z}} \left| \alpha - \frac{a}{b} \right| \right).$$

The set of all possible values of $\mu(\alpha)$, $\alpha \in \mathbb{R}$ is the Lagrange spectrum.

Markov (1880): Lagrange spectrum above 1/3 is discrete and consists of

$$\mu = \frac{m}{\sqrt{9m^2 - 4}},$$

where m is one of the Markov numbers:

$$m = 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...$$

In other words, Markov triples describe the "most irrational numbers"

$$\alpha = \frac{b}{q_1} + \frac{q_2}{q_1 q_3} - \frac{3}{2} + \frac{\sqrt{9q_3^2 - 4}}{2q_3}, \quad bq_2 - aq_1 = q_3.$$

Unicity Conjecture (Frobenius, 1913) Every Markov number appears as maximal only in one Markov triple (so Markov spectrum is simple).

Markov fractions and Markov numbers

Springborn 2024 introduced the Markov fractions as "the worst approximable rational numbers" with corresponding

$$C\left(\frac{p}{q}\right) := \inf_{\frac{a}{b} \in \mathbb{Q} \setminus \left\{\frac{p}{a}\right\}} b^2 \left|\frac{p}{q} - \frac{a}{b}\right| \ge \frac{1}{3}.$$

Markov fractions and Markov numbers

Springborn 2024 introduced the Markov fractions as "the worst approximable rational numbers" with corresponding

$$C\left(\frac{p}{q}\right) := \inf_{\frac{a}{b} \in \mathbb{Q} \setminus \left\{\frac{p}{a}\right\}} b^2 \left|\frac{p}{q} - \frac{a}{b}\right| \ge \frac{1}{3}.$$

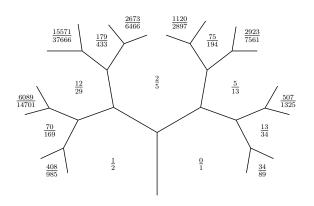
Key Lemma. The numbers on Markov fraction tree satisfy the relations

$$p_2q_3-p_3q_2=q_1,\quad p_3q_1-p_1q_3=q_2,\quad p_2q_1-p_1q_2=\frac{q_1^2+q_2^2}{q_3},$$

$$p_1' = \frac{p_2 q_2 + p_3 q_3}{q_1}, \ q_1' = \frac{q_2^2 + q_3^2}{q_1}, \quad p_2' = \frac{p_1 q_1 + p_3 q_3}{q_2}, \ q_2' = \frac{q_1^2 + q_3^2}{q_2}.$$

The denominators q of Markov fractions are Markov numbers.

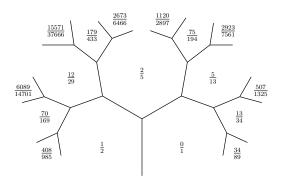
Bottom right branch: Fibonacci fractions



The bottom right branch of Markov fraction tree: $\frac{1}{2}$, $\frac{2}{5}$, $\frac{5}{13}$, $\frac{13}{34}$, $\frac{34}{89}$, $\frac{89}{233}$... consists of the ratios $p_k/q_k=F_{2k}/F_{2k+2}$ of the consecutive even Fibonacci numbers

$$F_k = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \dots$$

Bottom left branch: Pell fractions



Pell numbers (x_n, y_n) are solutions of Pell's equations $x^2 - 2y^2 = (-1)^n$: (1, 1), (3, 2), (7, 5), 17, 12), (41, 29), (99, 70), (239, 169), (577, 408), (1393, 985), ...

The corresponding Markov-Pell fractions are the ratios $p_k/q_k = y_{2k}/y_{2k+1}$ of the consecutive Pell numbers defined by $y_{n+1} = 2y_n + y_{n-1}$, $y_1 = 1, y_2 = 2$,

$$y_k = 1, 2, 5, 12, 29, 70, 169, 408, 985, \dots$$

Springborn function

The *Springborn function* $\mu(x)$ is defined by the property

$$\mu\left(\frac{a}{b}\oplus\frac{c}{d}\right)=\mu\left(\frac{a}{b}\right)*\mu\left(\frac{c}{d}\right),\quad |ad-bc|=1.$$

Springborn 2024: The extension of this function to real $x \in [0,1]$ is continuous at irrational x and at rational x with $\mu(x) = p/q$ has jump $l = 3 - \sqrt{9 - 4/q^2}$. In particular, $I = \left[\frac{p}{q} - \frac{1}{2}I(q), \frac{p}{q} + \frac{1}{2}I(q)\right]$ is the maximal interval around p/q, which is free of other Markov fractions.

Springborn function

The *Springborn function* $\mu(x)$ is defined by the property

$$\mu\left(\frac{a}{b}\oplus\frac{c}{d}\right)=\mu\left(\frac{a}{b}\right)*\mu\left(\frac{c}{d}\right),\quad |ad-bc|=1.$$

Springborn 2024: The extension of this function to real $x \in [0,1]$ is continuous at irrational x and at rational x with $\mu(x) = p/q$ has jump $l = 3 - \sqrt{9 - 4/q^2}$. In particular, $I = \left[\frac{p}{q} - \frac{1}{2}I(q), \frac{p}{q} + \frac{1}{2}I(q)\right]$ is the maximal interval around p/q, which is free of other Markov fractions.

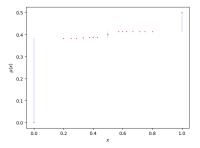


Figure: The first few values of $\mu(x)$ with vertical lines indicating the jumps

Saltus representation

APV 2025: Springborn function coincides with its saltus function:

$$\mu(x) = s_{\mu}(x) := -\frac{1}{2}I(1) + \sum_{a/b \in \mathbb{Q} \cap [0,1]} I\left(q\left(\frac{a}{b}\right)\right) H\left(x - \frac{a}{b}\right),$$

where $q(\frac{a}{b})$ is the Markov number and H(x) is the Heaviside step function.

Saltus representation

APV 2025: Springborn function coincides with its saltus function:

$$\mu(x) = s_{\mu}(x) := -\frac{1}{2}I(1) + \sum_{a/b \in \mathbb{Q} \cap [0,1]} I\left(q\left(\frac{a}{b}\right)\right) H\left(x - \frac{a}{b}\right),$$

where $q(\frac{a}{b})$ is the Markov number and H(x) is the Heaviside step function.

The proof follows from the McShane identity, which can be written as

$$\frac{1}{2}(I(1) + I(2)) + \sum_{q \in \mathcal{M}, q > 2} I(q) = \frac{1}{2},$$

where \mathcal{M} is the set of all Markov numbers.

Corollary

The derivative $\mu'(x) = 0$ almost everywhere.

Exceptional vector bundles on \mathbb{P}^2

Let E be an algebraic vector bundle on complex projective plane \mathbb{P}^2 of rank r with the Chern classes c_1 and c_2 . Since $H^2(\mathbb{P}^2) \cong \mathbb{Z}$ and $H^4(\mathbb{P}^2) \cong \mathbb{Z}$ we can consider c_1 and c_2 as integers. The **slope** of E is defined as the ratio

$$\mu(E):=\frac{c_1}{r}.$$

Exceptional vector bundles on \mathbb{P}^2

Let E be an algebraic vector bundle on complex projective plane \mathbb{P}^2 of rank r with the Chern classes c_1 and c_2 . Since $H^2(\mathbb{P}^2) \cong \mathbb{Z}$ and $H^4(\mathbb{P}^2) \cong \mathbb{Z}$ we can consider c_1 and c_2 as integers. The **slope** of E is defined as the ratio

$$\mu(E):=\frac{c_1}{r}.$$

The bundle E is called **stable** if for any proper sub-sheaf $F \subset E$ we have

$$\mu(F) < \mu(E)$$

and **rigid** if $Ext^1(E, E) = 0$. The vector bundles, which are both stable and rigid, are called **exceptional**. They can also be defined by the conditions

$$Hom(E, E) = \mathbb{C}, Ext^{i}(E, E) = 0, i > 0.$$

Exceptional vector bundles on \mathbb{P}^2

Let E be an algebraic vector bundle on complex projective plane \mathbb{P}^2 of rank r with the Chern classes c_1 and c_2 . Since $H^2(\mathbb{P}^2) \cong \mathbb{Z}$ and $H^4(\mathbb{P}^2) \cong \mathbb{Z}$ we can consider c_1 and c_2 as integers. The **slope** of E is defined as the ratio

$$\mu(E):=\frac{c_1}{r}.$$

The bundle E is called **stable** if for any proper sub-sheaf $F \subset E$ we have

$$\mu(F) < \mu(E)$$

and **rigid** if $Ext^1(E, E) = 0$. The vector bundles, which are both stable and rigid, are called **exceptional**. They can also be defined by the conditions

$$Hom(E, E) = \mathbb{C}, Ext^{i}(E, E) = 0, i > 0.$$

Drèzet and Le Potier 1984: The exceptional vector bundles E on \mathbb{P}^2 are uniquely determines by the slope $\mu(E)$.

The main question is to describe the set $\mathfrak E$ of all possible slopes of the exceptional bundles (called **exceptional slopes**).

Exceptional slopes and Markov fractions

Drèzet and Le Potier 1984: The set $\mathfrak E$ is the image of the special function $\epsilon:\mathfrak D\to\mathbb Q$, where $\mathfrak D$ is the set of dyadic (binary) rationals $m/2^n$.

This function has the properties $\epsilon(-x) = -\epsilon(x)$, $\epsilon(x+n) = \epsilon(x) + n$, $n \in \mathbb{Z}$ and is uniquely defined by the condition: if $\epsilon(\frac{m}{2^n}) = \frac{p_1}{q_1}$, $\epsilon(\frac{m+1}{2^n}) = \frac{p_2}{q_2}$, then

$$\frac{p_3}{q_3} := \epsilon \left(\frac{2m+1}{2^{n+1}} \right) = \frac{1}{2} \left(\frac{p_1}{q_1} + \frac{p_2}{q_2} + \frac{q_1^{-2} - q_2^{-2}}{p_1/q_1 - p_2/q_2 + 3} \right).$$

Exceptional slopes and Markov fractions

Drèzet and Le Potier 1984: The set $\mathfrak E$ is the image of the special function $\epsilon:\mathfrak D\to\mathbb Q$, where $\mathfrak D$ is the set of dyadic (binary) rationals $m/2^n$.

This function has the properties $\epsilon(-x) = -\epsilon(x)$, $\epsilon(x+n) = \epsilon(x) + n$, $n \in \mathbb{Z}$ and is uniquely defined by the condition: if $\epsilon\left(\frac{m}{2^n}\right) = \frac{p_1}{q_1}$, $\epsilon\left(\frac{m+1}{2^n}\right) = \frac{p_2}{q_2}$, then

$$\frac{p_3}{q_3} := \epsilon \left(\frac{2m+1}{2^{n+1}} \right) = \frac{1}{2} \left(\frac{p_1}{q_1} + \frac{p_2}{q_2} + \frac{q_1^{-2} - q_2^{-2}}{p_1/q_1 - p_2/q_2 + 3} \right).$$

APV 2025: The set $\mathfrak E$ of slopes of the exceptional bundles on $\mathbb P^2$ coincides with the set of all Markov fractions.

The key observation is that the Drèzet-Le Potier defining relation for $p_1/q_1 < p_2/q_2$ is equivalent to the Springborn mediant rule:

$$\frac{1}{2}\left(\frac{p_1}{q_1} + \frac{p_2}{q_2} + \frac{q_1^{-2} - q_2^{-2}}{p_1/q_1 - p_2/q_2 + 3}\right) = \frac{p_1q_1 + p_2q_2}{q_1^2 + q_2^2}.$$

Exceptional slopes and Markov fractions

Drèzet and Le Potier 1984: The set $\mathfrak E$ is the image of the special function $\epsilon:\mathfrak D\to\mathbb Q$, where $\mathfrak D$ is the set of dyadic (binary) rationals $m/2^n$.

This function has the properties $\epsilon(-x) = -\epsilon(x)$, $\epsilon(x+n) = \epsilon(x) + n$, $n \in \mathbb{Z}$ and is uniquely defined by the condition: if $\epsilon\left(\frac{m}{2^n}\right) = \frac{p_1}{q_1}$, $\epsilon\left(\frac{m+1}{2^n}\right) = \frac{p_2}{q_2}$, then

$$\frac{p_3}{q_3} := \epsilon \left(\frac{2m+1}{2^{n+1}} \right) = \frac{1}{2} \left(\frac{p_1}{q_1} + \frac{p_2}{q_2} + \frac{q_1^{-2} - q_2^{-2}}{p_1/q_1 - p_2/q_2 + 3} \right).$$

APV 2025: The set $\mathfrak E$ of slopes of the exceptional bundles on $\mathbb P^2$ coincides with the set of all Markov fractions.

The key observation is that the Drèzet-Le Potier defining relation for $p_1/q_1 < p_2/q_2$ is equivalent to the Springborn mediant rule:

$$\frac{1}{2}\left(\frac{p_1}{q_1} + \frac{p_2}{q_2} + \frac{q_1^{-2} - q_2^{-2}}{p_1/q_1 - p_2/q_2 + 3}\right) = \frac{p_1q_1 + p_2q_2}{q_1^2 + q_2^2}.$$

Corollary (Rudakov 1988) The ranks of the exceptional vector bundles on \mathbb{P}^2 are Markov numbers.

Unicity conjecture

The celebrated *Unicity conjecture* claims that any Markov triple is uniquely determined by its maximal part. Springborn reformulated it as the following

Conjecture 1. For any Markov number q there exists unique Markov fraction $0 \le \frac{p}{q} \le \frac{1}{2}$.

Unicity conjecture

The celebrated *Unicity conjecture* claims that any Markov triple is uniquely determined by its maximal part. Springborn reformulated it as the following

Conjecture 1. For any Markov number q there exists unique Markov fraction $0 \le \frac{p}{q} \le \frac{1}{2}$.

Modulo our results we can reformulate the Unicity conjecture as

Conjecture 2. Every exceptional bundle E on \mathbb{P}^2 is determined by its rank uniquely modulo $E \to E^*, E \to E \otimes O(n)$.

Unicity conjecture

The celebrated *Unicity conjecture* claims that any Markov triple is uniquely determined by its maximal part. Springborn reformulated it as the following

Conjecture 1. For any Markov number q there exists unique Markov fraction $0 \le \frac{\rho}{q} \le \frac{1}{2}$.

Modulo our results we can reformulate the Unicity conjecture as

Conjecture 2. Every exceptional bundle E on \mathbb{P}^2 is determined by its rank uniquely modulo $E \to E^*, E \to E \otimes O(n)$.

Note that for any Markov fraction p/q we have the quadratic congruence

$$p^2 + 1 \equiv 0 \, (mod \, q).$$

For prime q it has a unique (up to a sign) solution, so both conjectures hold true in this case (Baragar 1996).

For example, for Markov fraction $\frac{15571}{37666}$ with $37666 = 2 \times 37 \times 509$ the congruence $x^2 + 1 \equiv 0 \pmod{37666}$ has 4 solutions $x \equiv \pm 2337, \pm 15571$.

Can we "characterise" the particular solution given by the numerator p of the Markov fraction for composite q?

Second Chern class and Markov form

By Riemann-Roch theorem the second Chern class $c_2(E)$ of the exceptional bundle E can be computed in terms of $p = c_1(E)$, q = r(E) as

$$c_2(E) = \frac{1}{2}(q-1)(s+1), \quad s = \frac{p^2+1}{q}.$$

Second Chern class and Markov form

By Riemann-Roch theorem the second Chern class $c_2(E)$ of the exceptional bundle E can be computed in terms of $p = c_1(E)$, q = r(E) as

$$c_2(E) = \frac{1}{2}(q-1)(s+1), \quad s = \frac{p^2+1}{q}.$$

It is interesting that the *Markov binary quadratic form* can be written in these terms as

$$f(x,y) = qx^{2} + (3q - 2p)xy + (s - 3p)y^{2}.$$

The roots of the quadratic equation

$$f(\alpha, 1) = q\alpha^2 + (3q - 2p)\alpha + (s - 3p) = 0$$

are Markov irrationalities, which are limit points of the set of Markov fractions.

Exceptional bundles on del Pezzo surfaces

Rudakov 1988: the exceptional collections on quadrics $\mathbb{P}^1 \times \mathbb{P}^1$ have ranks (x,y,z) satisfying the Diophantine equation

$$x^2 + y^2 + 2z^2 = 4xyz$$

with all positive solutions derived by mutations from (1, 1, 1).

Exceptional bundles on del Pezzo surfaces

Rudakov 1988: the exceptional collections on quadrics $\mathbb{P}^1 \times \mathbb{P}^1$ have ranks (x, y, z) satisfying the Diophantine equation

$$x^2 + y^2 + 2z^2 = 4xyz$$

with all positive solutions derived by mutations from (1, 1, 1).

Karpov and Nogin 1989: generalisation to other del Pezzo surfaces S known to be isomorphic to either $\mathbb{P}^1 \times \mathbb{P}^1$, or to X_m being the plane \mathbb{P}^2 blown up in m generic points with $0 \le m \le 8$. In particular, for X_3 we have the Diophantine equation

$$x^2 + 2y^2 + 3z^2 = 6xyz$$

with all positive solutions derived by mutations from (1, 1, 1).

Exceptional bundles on del Pezzo surfaces

Rudakov 1988: the exceptional collections on quadrics $\mathbb{P}^1 \times \mathbb{P}^1$ have ranks (x, y, z) satisfying the Diophantine equation

$$x^2 + y^2 + 2z^2 = 4xyz$$

with all positive solutions derived by mutations from (1, 1, 1).

Karpov and Nogin 1989: generalisation to other del Pezzo surfaces S known to be isomorphic to either $\mathbb{P}^1 \times \mathbb{P}^1$, or to X_m being the plane \mathbb{P}^2 blown up in m generic points with $0 \le m \le 8$. In particular, for X_3 we have the Diophantine equation

$$x^2 + 2y^2 + 3z^2 = 6xyz$$

with all positive solutions derived by mutations from (1, 1, 1).

What are the corresponding exceptional slopes in the del Pezzo cases?

References

- A.A. Markoff Sur les formes quadratiques binaires indéfinies. Mathematische Annalen, 15 (1879), 381-406; 17 (1880), 379-399.
- J.-M. Drèzet and J. Le Potier Fibrès stables et fibrès exceptionnels sur \mathbb{P}_2 . Ann. Sci. Ecole Norm. Sup. (4) 18(1985), 193-243.
- A. N. Rudakov *The Markov numbers and exceptional bundles on* \mathbb{P}^2 . Mathematics of the USSR-Izvestiya **32:1** (1989), 99–112.
- B. Springborn *The worst approximable rational numbers.* J. Number Theory **263** (2024), 153-205.
- A.P. Veselov Markov fractions and the slopes of the exceptional bundles on \mathbb{P}^2 . arXiv:2501.06779.