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Overview of talk

What are automorphic Lie algebras?

Motivation from Integrable Systems

Results related to elliptic automorphic Lie algebras1, 2

▶ Holod’s hidden symmetry algebra of the Landau-Lifshitz equation
▶ Uglov’s algebra

1Vincent Knibbeler, Sara Lombardo, and Casper Oelen. “A classification of
automorphic Lie algebras on complex tori”. In: Proceedings of the Edinburgh
Mathematical Society (2024), pp. 1–43.

2Sara Lombardo and Casper Oelen. “Normal forms of elliptic automorphic Lie
algebras and Landau-Lifshitz type of equations”. In: arXiv preprint arXiv:2412.20482
(2024).
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What are automorphic Lie algebras?

Automorphic Lie algebras (aLias) are Lie algebras of meromorphic maps

Riemann surface X → Lie algebra g

(g finite-dimensional complex) with the following properties:

1 pointwise Lie bracket: [f , g ](p) = [f (p), g(p)], p ∈ X

2 holomorphic outside a set of “punctures”

3 equivariant with respect to a group Γ acting on X and g by
automorphisms
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Motivation

ALias generalise various Lie algebras
▶ (twisted) current algebras
▶ (twisted) loop algebras
▶ Onsager algebras

Appear in integrable systems
▶ In the construction and classification of classical integrable systems

Related to geometric deep learning3

In algebra: example of equivariant map algebras4

3Vincent Knibbeler. “Computing equivariant matrices on homogeneous spaces for
geometric deep learning and automorphic Lie algebras”. In: Advances in Computational
Mathematics 50.2 (2024), p. 27.

4Erhard Neher, Alistair Savage, and Prasad Senesi. “Irreducible finite-dimensional
representations of equivariant map algebras”. In: Transactions of the American
Mathematical Society 364.5 (2012), pp. 2619–2646.
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Twisted loop algebras

Let g be a finite-dimensional complex Lie algebra (simple) and C[z , z−1]
the ring of Laurent polynomials. Let ρ be an order n automorphism of g.

Form the loop algebra

L(g) = g⊗C C[z , z−1]

with bracket [A⊗ f ,B ⊗ g ] := [A,B]⊗ fg .

L(g) is the Lie algebra of regular maps f : C \ {0} → g.

The twisted loop algebra L(g, ρ) is the subalgebra of equivariant
maps f : C \ {0} → g such that

ρf (z) = f (ϵz), ϵn = 1.

Kac (1969): For any inner automorphism ρ, there is an isomorphism

L(g, ρ) ∼= g⊗C C[z , z−1]

of Z-graded Lie algebras.
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The ingredients of an aLia are:

Finite-dimensional complex Lie algebra g.
Compact Riemann surface X . (↔ C∞)
Finite group Γ acting on g and on X via the homomorphisms

ρ : Γ → Aut(g), σ : Γ → Aut(X ). (↔ Γ = Cn, σ(r)z = ϵz)

Ring OX of regular functions on X := X \ σ(Γ)S , S ⊂ X .
(↔ S = {0,∞}, OX = C[z , z−1])

Definition aLias

An aLia A is a fixed point Lie subalgebra of g⊗C OX with respect to the
action

γ · (A⊗ f (z)) = ρ(γ)A⊗ f (σ(γ−1)z), γ ∈ Γ.

That is,

A = (g⊗C OX)
ρ⊗σ(Γ) = {a ∈ g⊗C OX : γ · a = a ∀γ ∈ Γ}.

Equivalently,
a(z) ∈ A ⇐⇒ a(σ(γ)z) = ρ(γ)a(z) ∀γ ∈ Γ.
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History of aLias

ALias as a subject on its own was introduced by Lombardo and
Mikhailov in [LM04],[LM05]. Further work related to integrable
systems by Bury and Mikhailov [BM21].

Algebraic development by Lombardo and Sanders [LS10], and later
with Knibbeler [KLS17], [KLS20], with Veselov [KLV23], with CO
[KLO24], and more recently by Knibbeler [Kni25].

Representation theory studied by Knibbeler and Lombardo with
Duffield [DKL24].

In algebra, aLias are known as equivariant map algebras, introduced
by Neher, Savage and Senesi [NSS12].

The classification of aLias is part of the program of classifying Lax
operators and hence of classifying (classical) integrable systems.
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Example 1: Elliptic aLia with Γ = C2

Let us compute
(sl2 ⊗C OT)

C2

with C2 = ⟨γ⟩ and on a complex torus T = C/Z+ Zτ such that

γ · z = −z .

γ ·
(
a b
c −a

)
=

(
a −b
−c −a

)
.

T = T \ C2 · {0} = T \ {0}.

τ

10

Figure: Complex torus T = C/Z+ Zτ and S = {0}.
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Example 1: Elliptic aLia with Γ = C2

Let M(T ) be the field of meromorphic functions on T . To describe the
ring

OT := {f ∈ M(T ) : f has poles restricted to C2 · {0} = {0}},

we use the Weierstrass ℘-function associated to lattice Λ = Z+ Zτ :

℘Λ : C/Λ → C ∪ {∞}, ℘Λ(z) =
1

z2
+

∑
0̸=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
.

Meromorphic with a (double) pole at z = 0.

M(T ) = C(℘Λ, ℘
′
Λ).

℘Λ(−z) = ℘Λ(z).

(℘′
Λ)

2 = 4℘3
Λ − g2(τ)℘Λ − g3(τ).

OT = C[℘Λ, ℘
′
Λ] = C[℘Λ]⊕ ℘′

ΛC[℘Λ]
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Example 1: Elliptic aLia with Γ = C2

Eigenspace decomposition:

sl2 = sl+2 ⊕ sl−2 = C⟨h, e, f ⟩ = C
(
1 0
0 −1

)
⊕ C

〈(0 1
0 0

)
,

(
0 0
1 0

)〉
.

Futhermore, OT = O+
T ⊕O−

T = C[℘]⊕ ℘′C[℘]. We have

(sl2 ⊗C OT)
C2 = sl+2 ⊗O+

T ⊕ sl−2 ⊗O−
T = C⟨H,E ,F ⟩ ⊗C C[℘],

where H = h ⊗ 1, E = e ⊗ ℘′, F = f ⊗ ℘′. Lie structure:

[H,E ] = 2E , [H,F ] = −2F , [E ,F ] = H ⊗ (4℘3 − g2(τ)℘− g3(τ)).

Note for example that

E (γ · z) = e ⊗ ℘′(−z) = −e ⊗ ℘′(z) = γ · E (z).

Observe:

(sl2 ⊗C OT)
C2 ̸∼= sl2 ⊗C OC2

T
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ALias and integrable systems

Consider a nonlinear PDE

ut = N(u), u = u(x , t). (1)

If we can find a Lax pair for (1), that is, operators L,M such that

ut = N(u) ⇐⇒ Lt = [L,M],

where [L,M] = LM −ML, then solvable via Inverse Scattering Transform.

Rare property for nonlinear PDEs. Our definition of integrable.

Wahlquist-Estabrook prolongation method ⇝ Lax pair.

Reversed direction:

general form of Lax pair ⇝ integrable equations

Via the method of reduction.
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Consistency between a pair of linear equations for a vector function
ψ = ψ(x , t;λ): {

Lψ = ψx − Xψ = 0,

Mψ = ψt − Tψ = 0,

where X ,T are matrices depending on x , t and a complex parameter λ.

Integrable nonlinear equation ⇐⇒ Xt − Tx + [X ,T ] = 0.

Example: the KdV equation

ut = 6uux + uxxx , u = u(t, x),

can be written as the consistency condition of the linear system

ψx = Xψ, ψt = Tψ,

where ψ is a vector and

X =

(
0 1

λ− u 0

)
, T =

(
−ux 4λ+ 2u

4λ2 − 2λu − 2u2 − uxx ux

)
,

where λ is the spectral parameter.
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Application I: reduction of Lax pairs

Suppose λ is a rational parameter. Consider the “fairly general”
sl(N,C)-valued Lax pair

L(x , t;λ)= ∂x − X (x , t;λ), X = Q0 + Qλ+ Q̄λ−1,

M(x , t;λ)= ∂t − T (x , t;λ), T = P0 + Pλ+ P̄λ−1 + Q2λ2 + Q̄2λ−2,

where Q0,Q, Q̄,P0,P, P̄ ∈ sl(N,C).
The compatibility condition

Xt − Tx + [X ,T ] = 0

yields a system of (5(N2 − 1)) nonlinear coupled equations for the
matrix entries.

By definition integrable.

X ,T ∈ sl(N,C)⊗C C[λ, λ−1].

By imposing reductions on L(λ), M(λ) one obtains integrable PDEs.
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Example 2: DN reduction

Following [Lom04], consider

r : L(λ) 7→ SL(ωλ)S−1, s : L(λ) 7→ −LA(1/λ),

where Sij = δijω
i , ω = e2πi/N , and where LA is the formal adjoint of X .

Impose invariance of Γ = ⟨r , s⟩ ∼= DN on L(λ) and M(λ).

L(λ),M(λ) ∈ (sl(N,C)⊗C C[λ, λ−1])DN .
Compatibility condition reduces to

Qt − Px + [Q̄,Q2] = 0, Q2
x = [Q,P].

In components

qit − pix + qiq
2
i+1 − q2i−1qi = 0, qipi+1 − piqi+1 − (qiqi+1)x = 0.

This results in

u1t =
1

3
(u3xx − u2xx) +

1

3
u1x(u3x − u2x)− exp(2u2) + exp(2u3)

and cyclic permutations of the indices 1, 2, 3.
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Application II: Lax pairs on higher genus curves

Suppose that the zero-curvature equation

∂tX − ∂xT + [X ,T ] = 0,

where X (x , t;λ) and T (x , t;λ) are rational matrix functions of a spectral
parameter λ,

X = u0(x , t)+
∑
i ,s

uis(x , t)(λ−λi )−s , T = v0(x , t)+
∑
j ,k

vjk(x , t)(λ−µj)−k .

No obstruction in obtaining a well-defined system of equations.

Obstruction for “naive” generalisation to matrix functions
meromorphic on algebraic curves of genus > 0.

Resolved by imposing a symmetry condition on L and M:

X (γ · λ) = γ · X (λ), T (γ · λ) = γ · T (λ), where γ ∈ Γ.
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Examples with spectral parameter on genus 1 curves

1 Landau-Lifshitz equation: St = S × Sxx + S × JS ⇐⇒ [L(z),M(z)] = 0,

L(z) =
∂

∂x
− i

3∑
α=1

wα(z)Sασα,

M(z) =
∂

∂t
− i

3∑
α,β,γ=1

wα(z)σαSβSγxϵαβγ + 2iw1(z)w2(z)w3(z)
3∑

α=1

wα(z)
−1Sασα,

where the wi (z) are elliptic functions, S(x , t) = (S1(x , t),S2(x , t),S3(x , t))
and σα are the Pauli matrices.

2 Krichever-Novikov equation: vt =
1
4vxxx −

3
8
v2
xx

vx
+ 3

8
4v3−g2v−g3

vx
. Lax pair:

L(z) =
∂

∂x
−

3∑
j=1

wj (z)Mjσj , M(z) =
∂

∂t
−

3∑
j=1

[
−

d

dz
wj (z)Mj + wj (z)(QMj + Pj )

]
σj ,

(z ∈ C/Zω1 + Zω2) M1 =
v2 − 1

2vx
, M2 = i

v2 + 1

2vx
, M3 = −

v

vx
.

Q =
1

2

(
−
1

2

vxxx

vx
−

1

4

v2
xx

v2
x

+
(A1 − A2)(v4 + 1)− 6(A1 + A2)v2

v2
x

)
,

P1 =
vxxv

vx
− vx , P2 = −i

(
vxx

vx
+ vx

)
, P3 = −

vxx

2v2
x

.
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The classification of (sl(2,C)⊗C OT)
Γ

Let τ ∈ H := {z ∈ C : Im(z) > 0}. The following Lie algebras appear in
the classification with T = T \ Γ · {0}:

1

Cτ = sl(2,C)⊗C C[x , y ]/(y2 − 4x3 + g2(τ)x + g3(τ)),

with Lie structure inherited from sl2(C).
2

Sτ = C⟨E ,F ,H⟩ ⊗C C[x ],

with Lie structure (linear over C[x ])

[H,E ] = 2E , [H,F ] = −2F , [E ,F ] = H ⊗ (4x3− g2(τ)x − g3(τ)).

3 The Onsager algebra O with basis Ak ,Gm (k ∈ Z,m ∈ N) and
brackets

[Ak ,Al ] = 4Gk−l , [Ak ,Gm] = 2(Ak−m − Ak+m), [Gm,Gn] = 0,

with G−m = −Gm (m > 0) and G0 = 0.
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The Lie algebras that appear in the classification of

(sl(2,C)⊗C OT)
Γ (T = T \ Γ · {0})

fall into three (pairwise non-isomorphic) classes determined by the branch
points of the canonical projection

π : T → T/Γ.

# branch points Lie algebra

0 C[τ ]

2 O
3 S[τ ]

Table: Lie algebra associated to the number of branch points of the quotient map
T → T/Γ.

C[τ ]
∼= C[τ ′] ⇐⇒ [τ ] = [τ ′] in SL(2,Z)\H

[τ ] = [τ ′] =⇒ S[τ ]
∼= S[τ ′]
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Two aLias with distinct σ : D2 → Aut(T )

τ

11
2

0

Figure: σ(D2) = ⟨r , s⟩ with r(z) = z + 1
2
and s(z) = −z. S = {0}.

(sl(2,C)⊗C OT)
ρ⊗σ(D2) ̸∼= sl(2,R), for any ring R.

τ

1

1+τ
2

τ
2

1
2

0

Figure: σ(D2) = ⟨r , s⟩ with r(z) = z + 1
2
and s(z) = z + τ

2
. S = {0}.

(sl(2,C)⊗C OT)
ρ⊗σ(D2) ∼= sl(2,R), with R = C[℘ 1

2
Λ, ℘

′
1
2
Λ
].
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Example 3: Landau-Lifshitz equation

The aLia with Γ = D2 plays a prominent role in integrable systems:

Appears in Sklyanin’s Lax pair for the Landau-Lifshitz equation.

The (fully anisotropic) Landau-Lifshitz (LL) equation

St = S × Sxx + S × JS ,

S = (S1(x , t), S2(x , t),S3(x , t)), J = diag(J1, J2, J3) (Jα ̸= Jβ for α ̸= β)
can be written as the compatibility condition [L,M] = 0 where

L(z) =
∂

∂x
− i

3∑
α=1

wα(z)Sασα,

M(z) =
∂

∂t
− i

3∑
α,β,γ=1

wα(z)σαSβSγxϵ
αβγ + 2iw1(z)w2(z)w3(z)

3∑
α=1

wα(z)
−1Sασα,

where the wα(z) satisfy wα(z)
2 − wβ(z)

2 = 1
4(Jα − Jβ), and σα are the

Pauli matrices.
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Example 3: Landau-Lifshitz equation

Let T = C/Z+ Zτ and consider σ : D2 → Aut(T ) be defined by

σ(r1)z = z + 1
2 , σ(r2)z = z + τ

2 ,

and ρ : D2 → Aut(sl(2,C))

ρ(r1) = Ad

(
1 0
0 −1

)
, ρ(r2) = Ad

(
0 1
1 0

)
.

For Lax pair of LL equation: L,M ∈ (sl(2,C)⊗C OT)
ρ⊗σ̃(D2), i.e.

L(σ(r)z) = ρ(r)L(z), M(σ(r)z) = ρ(r)M(z).

Claim: Elements Aα := wα(z)σα and Bα := wβ(z)wγ(z)σα (α = 1, 2, 3)
form a basis of (sl(2,C)⊗C OT)

D2 over C[℘ 1
2
Λ]:

(sl(2,C)⊗C OT)
D2 =

3⊕
α=1

C[℘ 1
2
Λ]Aα ⊕ C[℘ 1

2
Λ]Bα.

The Wahlquist-Estabrook prolongation algebra of the LL equation is
isomorphic to A(D2)⊕ C2.
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Suppose that w1(z),w2(z),w3(z) uniformise the complex curve

Er1,r2,r3 :

{
λ21 − λ23 = r3 − r1,

λ22 − λ21 = r1 − r2,

with ri ̸= rj for i ̸= j . Let

Xi = vi ⊗ wi , X ′
i = vi ⊗ wjwk , i = 1, 2, 3, (different notation!)

with C⟨v1, v2, v3⟩ ∼= sl(2,C) and [vi , vj ] = εijkvk . Let αij be the characters
of D2.

(sl(2,C)⊗C OT\D2·{0})
D2 =

1⊕
i,j=0

sl(2,C)αij ⊗C Oαij

T

=
⊕

i ̸=j ̸=k ̸=i

Cvi ⊗ (C[℘ 1
2Λ
]wi ⊕ C[℘ 1

2Λ
]wjwk)

=
3⊕

i=1

C[℘ 1
2Λ
]Xi ⊕ C[℘ 1

2Λ
]X ′

i .

Corollary

(sl(2,C)⊗C OT\D2·{0})
D2 = C⟨X1,X2,X3⟩.
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Theorem (Kac)

Let σ be an inner automorphism of order n of a simple finite-dimensional
Lie algebra g of the form

σ = exp

(
2πi

n
ad(h)

)
.

Then the automorphism Ψ(z) of the Lie algebra g⊗C C[z , z−1] defined by

Ψ(z) = exp(ln(z)ad(h))

establishes an isomorphism between g⊗C C[zn, z−n] and the twisted Lie
algebra L(g, σ) = (g⊗C C[z , z−1])Cn .

The proof follows from the relation

Ψ(e
2πi
n z) = σΨ(z).

Strategy: Find elliptic analogues to Ψ.
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Any simple complex Lie algebra g of rank ℓ with root system Φ has a
basis, known as the Chevalley basis, given by
{hi , aα : i = 1, . . . , ℓ, and α ∈ Φ} such that the brackets are given by

[hi , hj ] = 0,

[hi , aα] = α(hi )aα,

[aα, a−α] = hα,

[aα, aβ] = ±(r + 1)aα+β, α+ β ∈ Φ,

[aα, aβ] = 0, α+ β ̸∈ Φ ∪ {0},

where α, β ∈ Φ and where r is a certain integer.

Aim: we would like an analogues basis for the aLias (g⊗C OX)
Γ.

Casper Oelen (HW) Elliptic aLias and Integrable Systems 24 / 40



Normal forms of aLias

Let g be a finite-dimensional complex simple Lie algebra, T = C/Z+ Zτ ,
and S ⊂ T (nonempty, finite). Let

A(g, τ, S) = (g⊗C OT\D2·S)
ρ⊗σ̃(D2).

Definition

The normal form for A(g, τ, S) is a basis analogues to the Chevalley basis
of g:

A(g, τ, S) = C⟨{Hi ,Aα : i = 1, . . . , ℓ, and α ∈ Φ}⟩ ⊗C OD2

T\D2·S ,

with Lie structure obtained from g by replacing hi with Hi and Aα with
aα, and keep the structure constants the same. The basis elements satisfy:

Hi (σ(γ)z) = ρ(γ)Hi (z), Aα(σ(γ)z) = ρ(γ)Aα(z), ∀γ ∈ D2

for i = 1, . . . , ℓ and α ∈ Φ.
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Let ξp(z) = w1(z)w1(z − p): D2-invariant function on T with simple poles
at 0, p.

Theorem (Lombardo, Oelen (’25))

Let g be a complex reductive Lie algebra. Let ρ : D2 → Inn(g) be a
representation that factors through a representation
ρ : PGL(2,C) → Inn(g) and suppose that σ : D2 → Aut(T ) is a faithful
homomorphism that embeds D2 as translations of T . Let
S = {p0 = 0, p1, . . . , pn−1}, and T = T \ D2 · S. The following
isomorphism of Lie algebras holds:

(g⊗C OT)
ρ⊗σ̃(D2) ∼= g⊗C C[℘ 1

2
Λ, ℘

′
1
2
Λ
, ξp1 , . . . , ξpn−1 ].

When g is simple, the automorphic Lie algebra (g⊗C OT)
ρ⊗σ̃(D2) has

normal form

(g⊗COT)
ρ⊗σ̃(D2) = C⟨{Ωρhi ,Ωρaα : i = 1, . . . , n, and α ∈ Φ}⟩⊗CO

σ̃(D2)
T ,

where {hi , aα : i = 1, . . . , n, and α ∈ Φ} is a Chevalley basis for g.
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Ingredients of proof: D2-intertwiner

Let θj(z |τ), j = 1, . . . , 4 be the Jacobi theta functions and define

Ω(z) =

(
θ3(2z |2τ) ψ−(z)θ2(2z |2τ)
θ2(2z |2τ) ψ+(z)θ3(2z |2τ)

)
,

where

ψ±(z) = ±θ
2
4(0|τ)
θ3(0|τ)

θ3(2z |τ)
θ1(2z |τ)

− θ23(0|τ)
θ4(0|τ)

θ4(2z |τ)
θ1(2z |τ)

.

Then

1 Ω(z + 1
2 ) = T1Ω(z), with T1 =

(
1 0
0 −1

)
2 Ω(z + τ

2 ) = e−πi(2z+
τ
2 )T2Ω(z), with T2 =

(
0 1
1 0

)
3 detΩ(z) = −θ22(0|τ)θ1(2z |τ)

Proposition

Let ω := Ad(Ω) ∈ Aut(sl(2,C)⊗C OT). Then

ω(z + 1
2 ) = Ad(T1)ω(z), ω(z + τ

2 ) = Ad(T2)ω(z).
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Idea of proof

Consider the holomorphic map Ω : C \ 1
2Λ → GL(2,C)

Ω(z) =

(
θ3(2z |2τ) ψ−(z)θ2(2z |2τ)
θ2(2z |2τ) ψ+(z)θ3(2z |2τ)

)
Ω′(z) := [Ω(z)] ∈ PGL(2,C) descends to a D2-equivariant map on T :

Ω′(z + 1
2) = [T1]Ω

′(z), Ω′(z + τ
2 ) = [T2]Ω

′(z)

Use ρ : PGL(2,C) → Aut(g) and let Ωρ(z) = ρ([Ω(z)])

Fin. dim. irreps of PGL(2,C): Sym2n(C2)⊗ det−n ⇝ Ωρ(z)
preserves location of poles

Ωρ is a D2-equivariant automorphism of g⊗C OT

g⊗C OT = Ωρg⊗C OT and hence

(g⊗C OT)
D2 = Ωρg⊗C OD2

T
∼= g⊗C OD2

T

Finally, OD2
T = C[℘ 1

2
Λ, ℘

′
1
2
Λ
, ξp1 , . . . , ξpn−1 ]
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The explicit generators of (sl(2,C)⊗C OT)
D2

Write θj for θj(0|τ), j = 1, 2, 3, 4.

H(z) =

(
θ22µ2(z)µ3(z) −θ24µ1(z)µ2(z)− θ23µ1(z)µ3(z)

−θ24µ1(z)µ2(z) + θ23µ1(z)µ3(z) −θ22µ2(z)µ3(z)

)
,

E(z) =
1

2

 µ1(z) − θ23
θ22
µ2(z)− θ24

θ22
µ3(z)

θ23
θ22
µ2(z)− θ24

θ22
µ3(z) −µ1(z)

 ,

F (z) =
1

2

−θ42
(
µ2
2(z) +

θ23
θ22θ

2
4

)
µ1(z) ψ−(z)(1− µ2(z)µ3(z))

ψ+(z)(1 + µ2(z)µ3(z)) θ42

(
µ2
2(z) +

θ23
θ22θ

2
4

)
µ1(z)

 ,

where ψ± = ±θ24µ3(z)− θ23µ4(z) and µj(z) =
1

θj+1(0|τ)
θj+1(2z|τ)
θ1(2z|τ) .

Lie brackets:

[H(z),E (z)] = 2E (z), [H(z),F (z)] = −2F (z), [E (z),F (z)] = H(z).
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Recall

(sl(2,C)⊗C OT)
D2 =

3⊕
i=1

C[℘ 1
2
Λ]Xi ⊕ C[℘ 1

2
Λ]X

′
i ,

where

Xi (z) = vi ⊗ wi (z), X ′
i (z) = vi ⊗ wj(z)wk(z), i = 1, 2, 3.

(Recall C⟨v1, v2, v3⟩ ∼= sl(2,C) and [vi , vj ] = εijkvk .) Lie structure:

[Xi ,Xj ] = εijkXk , [X ′
i ,Xj ] = εijkXk ⊗ wj(z)

2, [X ′
i ,X

′
j ] = εijkX

′
k ⊗ wk(z)

2.

“complicated” brackets.

The normal form yields

(sl(2,C)⊗C OT)
D2 = C⟨H,E ,F ⟩ ⊗C C[℘ 1

2
Λ, ℘

′
1
2
Λ
] ∼= sl(2,C[℘Λ, ℘

′
Λ])

with Lie structure:

[H,E ] = 2E , [H,F ] = −2F , [E ,F ] = H.

“easy” brackets.
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Holod’s Algebra

Consider
Er1,r2,r3 : λ

2
i − λ2j = rj − ri , i , j = 1, 2, 3

in C3. Let λ = λ2i + Ai , where Ai are constants. Consider the complex Lie
algebra with basis elements

X 2n+2
i = λnλjλkvi , X 2m+1

i = λmλivi , n,m ∈ Z,

where i , j , k is a cyclic permutation of 1, 2, 3 and v1, v2, v3 are the (scaled)
Pauli matrices. This is known as the Holod algebra Hτ . The Lie structure
is given by

[X 2l+1
i ,X 2s+1

j ] = εijkX
2(l+s)+2
k ,

[X 2l+1
i ,X 2s

j ] = εijk(X
2(l+s)+1
k − AiX

2(l+s)−1
k ),

[X 2l
i ,X

2s
j ] = εijk(X

2(l+s)
k − AkX

2(l+s)−2
k ),

where l , s ∈ Z.
Often used in the AKS (Adler-Kostant-Symes) scheme.
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Holod’s Algebra

Theorem (Lombardo, Oelen (’24))

Let Λ = Z+ Zτ . Holod’s Lie algebra Hτ on the complex torus T = C/Λ
is the automorphic Lie algebra

Hτ = (sl(2,C)⊗C OT\D2·{0,±z0})
D2 ,

where ±z0 are the zeros of ℘Λ. Consequently,

Hτ = C⟨H,E ,F ⟩ ⊗C C[℘ 1
2
Λ, ℘

′
1
2
Λ
, ξ−z0 , ξz0 ]

∼= sl(2,R),

where H = Ad(Ω)h, E = Ad(Ω)e, F = Ad(Ω)f , and R = OD2

T\D2·{0,±z0}.
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Idea of proof

Recall the C-basis of Hτ :

X 2m+1
i = λmλivi , X 2n+2

i = λnλjλkvi n,m ∈ Z,

where λ2i − λ2j = rj − ri , i , j = 1, 2, 3 and λ = λ2i + Ai .

Ym
i (z) := 1

℘ 1
2 Λ

(z)mwi (z)vi , Zm
i (z) := 1

℘ 1
2 Λ

(z)mwj(z)wk(z)vi

D2-equivariant: e.g. Y
m
i (σ(γ)z) = ρ(γ)Ym

i (z) for all γ ∈ D2

Hτ ⊂ (sl(2,C)⊗C OT\D2·{0,±z0})
D2 =: A(τ, {0, z0,−z0})

Decomposition into subalgebras

A(τ, {0, z0,−z0}) = A(τ, {0})⊕ A(τ, {z0})⊕ A(τ, {−z0})

A(τ, {p}) ⊂ Hτ for p = 0,±z0

N.B. for [τ ] = [i ], z0 = −z0

Hence Hτ = A(τ, {0, z0,−z0}) ∼= sl(2,C[℘ 1
2
Λ, ℘

′
1
2
Λ
, ξ−z0 , ξz0 ])
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Uglov’s Algebra

Consider the complex Lie algebra Ek,ν± generated by {x±i }i=1,2,3 with the

defining relations (with ν± ∈ T , Jij ∈ C,wi (z)
2 − wj(z)

2 = Jij):

[x±
i , [x

±
j , x

±
k ]] = 0,

[x±
i , [x

±
i , x

±
k ]]− [x±

j , [x
±
j , x

±
k ]] = Jijx

±
k ,

[x+
i , x

−
i ] = 0,

[x±
i , x

∓
j ] =

√
−1(wi (ν

∓ − ν±)x∓
k − wj(ν

∓ − ν±)x±
k ).

Realisation as automorphic Lie algebra:

Ek,ν± ∼= (sl(2,C)⊗C OT)
D2 , T = T \ D2 · {ν+, ν−}.

Uglov [Ugl93]: the Lie (bi)algebra Ek,ν± can be quantised, the
corresponding quantum group is related to the eight-vertex R-matrix.

Theorem (Lombardo, Oelen (’24))

Ek,ν± ∼= sl(2,C)⊗C C[℘̃, ℘̃′, ξ],

where ℘̃(z) := ℘ 1
2Λ
(z − ν−) and ξ(z) := w1(z − ν+)w1(z − ν−).
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Outlook

ALias (g⊗C OT)
Γ (genus 1 case) have been classified for g = sl(2,C) and

one orbit of punctures. Current research is focused on:

1 Extending the classification to more general g and higher genus
Riemann surfaces.

2 Establishing whether the following holds true for inner automorphisms:

(g⊗C OT)
Γ ∼= g⊗C OΓ

T

if T → T/Γ is unramified. In particular,

(sl(N,C)⊗C OT)
CN×CN

?∼= sl(N,C)⊗C C[℘, ℘′],

where CN × CN acts by translations on T .

3 Applying aLias in the context of (classical/quantum) integrable
systems.
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Thank you for listening!
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