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Periods of algebraic varieties

2

They describe the comparison between topological data (cycles) 

and algebraic data (algebraic De Rham forms).

∫T(γ)

A
Pk

Some integration domain

without boundary

 defines a smooth variety
P
V(P) = {z ∣ P(z) = 0}

 is a polynomial A
γ

          Hn(S, ℤ) × Hn
DR(S) → ℂ γ, ω ↦ ∫γ

ω

A period of an algebraic variety is the integral of a rational form of the variety on a cycle.

Torelli-type theorem for K3 surfaces:

Two K3 surfaces are isomorphic if and only if they have “the same” periods.

An elliptic curve
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Motivation and goals

3

Goal: compute numerical approximations of these integrals with large precision.

Periods appear in diverse fields of mathematics and 
physics, such as Quantum field theory (Feynman 
integrals), Hodge theory, motives, number theory 

(BSD conjecture) …

Hundreds of digits 
Sufficiently many to recover  

algebraic invariants

γ
For this, we need an appropriate description of the integrals.


In particular we will focus on understanding the cycles of 
integration (the homology), how to represent them in a way that 

makes integration concrete, and how to compute a basis of them.

Furthermore we want this to be effective and efficient.
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Previous works on period computations
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[Sertöz 2019]: compute the period matrix of smooth 
projective hypersurfaces by deformation.

[Deconinck, van Hoeij 2001],  
[Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: 


Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]: 

Higher dimensional varieties 


(double covers of /  ramified 

along a hyperplane arrangement)

ℙ2 ℙ3

Variety for which  
the periods are known

Target variety

[Đonlagić 2025]:

Periods of fibre products of elliptic surfaces


with semi-simple singular fibres

[Lairez PP Vanhove 2025]:

Periods of hypersurfaces

[PP 2025 x2]:

Periods of elliptic surfaces 


and fibre products of elliptic surfaces



Periods of algebraic 
curves
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First example: algebraic curves
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t1 t2
ℂ

ℓ

f −1(t1) f −1(t2)

Let  be the elliptic curve defined by 
 


and let  be a 
generic projection.

𝒳
P = y3 + x3 + 1 = 0

f : (x, y) ↦ y/(2x + 1)
The fibre above  is 


. 

It deforms continuously with respect to .

t ∈ ℂ 𝒳t = f −1(t)
= {(x, t(2x + 1)) ∣ P (x, t(2x + 1)) = 0}

t

In dimension 1, we are looking for 

closed paths in , up to deformation (1-
cycles).

𝒳

ℂ

ℓ


f (loop)
= loop

 ?f −1(loop) = loop

Not always,  
see next slide

Values of  for which 
 

has a double root (critical values)

t
P(x, t(2x + 1)) = t3(2x + 1)3 + x3 + 1
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What happens when you loop around a critical point?

7

f −1(t1)

t1

ℂ

ℓ

A loop  in  pointed at  induces a permutation of 
.

ℓ ℂ t1
𝒳t1 = f −1(t1)

This permutation is called the action of monodromy along  on . 

It is denoted .


If  is a simple loop around a critical value,  is a transposition.

ℓ 𝒳t1
ℓ*

ℓ ℓ*
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ℂ
b

Δ3

ℓ3 c2c3

Periods of algebraic curves

8

The lift of a simple loop  around a critical value  that has a non-trivial 
boundary in  is called the thimble of . It is an element of .

ℓ c
𝒳b c H1(𝒳, 𝒳b)

Concretely, we take the kernel of the boundary map 
δ : H1(𝒳, 𝒳b) → H0(𝒳b)

Fact: all of  can be recovered this way.H1(𝒳)

Thimbles serve as building blocks to recover . 

It is sufficient to glue thimbles together in a way such that their boundaries cancels.


H1(𝒳)

Relative homology 

of the pair (𝒳, 𝒳b)

0 → H1(𝒳) → H1(𝒳, 𝒳b) → H0(𝒳b)

Simple loop 

around c1

Generated 

by thimbles

Δ1

Δ2

c1
ℓ1

ℓ2
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Computing periods of algebraic curves
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b

ℂ

1. Compute simple loops  around the critical values — 
basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})
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Computing periods of algebraic curves
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𝒳b

b

ℂ

ℓ

1. Compute simple loops  around the critical values — 
basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b
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Computing periods of algebraic curves
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b

ℂ

ℓ

1. Compute simple loops  around the critical values — 
basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b
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Computing periods of algebraic curves
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ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

c2
c3

1. Compute simple loops  around the critical values — 
basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b

4. Compute sums of thimbles without boundary  basis of →
H1(𝒳)
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Computing periods of algebraic curves
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5. Periods are integrals along these loops 

 we have an explicit parametrisation of these paths  numerical integration.→ →

∫γ
ω = ∫ℓ

ωt

1. Compute simple loops  around the critical values — 
basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

4. Compute sums of thimbles without boundary  basis of →
H1(𝒳)

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b



Elliptic surfaces
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An elliptic surface  is a smooth algebraic surface 

equipped with a map to the projective line

S

Elliptic surfaces

such that all but finitely many fibres  are elliptic curves.f −1(t)
f : S → ℙ1

ℙ1

f −1(t1) f −1(t2)

t1
t2t3

15

f −1(t3)

We will assume the surface has a section.

[PP 2024]
[Lairez PP Vanhove 2024]
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Monodromy
Let  be a smooth surface in . We consider a projection .


The fibre  is a curve, which deforms continuously as  moves in .
𝒳 ℙ3 𝒳 → ℙ1

𝒳t = f −1(t) t ℙ1

ℙ1

ℓ

The map  induced by this deformation along a 
loop  is called the monodromy along .

ℓ* : H1(𝒳b) → H1(𝒳b)
ℓ ℓ

Eb

b

16

  γ Σ ℓ*γ

Ehresmann’s 

fibration theorem

In other words, the first homology of the fibre is locally constant. 

The associated sheaf over  defines a local system.ℂ∖≠
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Extensions

∫τℓ(γ)
f(x, y)dxdy = ∫ℓ (∫γ

f(x, y)dx) dy

Two line integrals: 

we know how to compute these efficiently!


[Chudnovsky2, Van der Hoeven, Mezzarobba]

γ

b

ℓ

γ∂ = ℓ*γ τγ∂ 

ℙ1

We can recover 2-cycles for the periods 
of elliptic surfaces as extensions of 1-

cycles of the fibre.

γ

This description of cycles is well-suited for 
integrating the periods:

 does not have boundary

iff , that is 


iff 

τ
γ = γ∂ 

γ ∈ ker ℓ* − id


π1(ℙ1∖≠, b) × H1(Eb) → H2(S, Eb)
ℓ, γ ↦ τℓ(γ)

′τℓ(γ) = γ∂ − γ

such a path is called a simple loop 17

≠
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Parabolic homology
Each simple loop  contributes relative homology classes, 

called thimbles, in .
ℓ

H2(S, Eb)

b
ℂ

H2(Eb)

𝒯

H0(Eb)

1. Compute the set  of critical values.

2. Compute a basis of simple loops  of .

3. For each , compute the monodromy map .

4. Match boundaries of thimbles together to obtain extensions.

5. Integrate the periods on these extensions.

≠
ℓ1, …, ℓr π1(ℙ1∖≠, b)

1 ≤ i ≤ r ℓi*

18

Furthermore   is generated by 
extensions, fibre components, and a 

section.

H2(S)

Thimbles serve as building blocks for 
extensions: we can glue thimbles together 
in a way that matches their boundary to 

obtain closed cycles.

Obtained from the monodromy : 

′τℓ(γ) = ℓ*γ − γ

Their periods are zero.

Algorithm for computing periods of elliptic surfaces We only need to compute

periods of extensions.

b



35

Example: Let  be an elliptic surface.

A basis of the De Rham cohomology sheaf is given by the residues of 

 and .

𝒳t = V(X3 + Y3 + Z3 + tXYZ)

ω1(t) = Ω
X3 + Y3 + Z3 + tXYZ

ω2(t) = X3Ω
(X3 + Y3 + Z3 + tXYZ)2

Let . Then  is an exact differential. In particular for any 

cycle  the period function  is a solution of .

ℒ = (t3 + 27)′2
t + 3t2′t + t ℒω1

γt π(t) = ∫γt

res ω1(t) ℒ

Gauß-Manin connection

19

The cohomology sheaf  inherits a connection from the derivation in the base : 
the Gauß-Manin connection [Katz Oda 1968].

ℋn
DR (Et /ℚ(t)) ℙ1

Period functions  are solutions to a Fuchsian differential equation:


 the Picard-Fuchs equation.
∫γt

ωt

This connection can be computed explicitly via the Griffiths—Dwork reduction 
[Griffiths 1969, Dwork 1964].
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Computing monodromy

Πij = ∫γj

′i
tωt Π̃ij

Thus       i.e. Π̃ = ΠC

Π−1Π̃ = C ∈ GL2(ℤ)

Computation of

transcendental


nature

Πij

Π̃ij

It is sufficient to carry out this 
computation with precision  

to recover  exactly.
< 1/2

C

Analytic 

continuation

Solution to 

Picard-Fuchs

equation of ωt

Globally defined

 no monodromy⟹




The ’s are integers

γ̃j = ∑
k

ckjγk

ckj

[Chudnovsky2 90, Van der Hoeven 99,  
Mezzarobba 2010] 

20

= ∫∑k ckjγk

′i
tωt = ∑

k
ckj ∫γk

′i
tωt



35

Computing monodromy of differential operators

21

f(t) −
m

∑
k=0

f (k)(α)
k! (t − α)k ≤ 𝒫(m)2−m

In a disk around , the precision given by 
the Taylor formula is exponential in its order.

α

polynomial 

in  (effective)m

Linear complexity: 

recover  digits in  operationsm 𝒪(m)α t

From the derivatives at , 

we can recover the derivatives at .

α
t

[Chudnovsky2 90, Van der Hoeven 99, Mezzarobba 2010] 

In a small radius around :α

We compute  from .f (k)(α) ℒ

(using binary splitting)

[Mezzarobba Salvy 2009]



Fibre products
of elliptic surfaces
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Schoen’s construction

23

The fibre product  of two rational elliptic surface with disjoint critical 
values yields a smooth Calabi-Yau threefold. [Schoen 1988]

T = S1 ×ℙ1 S2

ℙ1

× × ×

When critical values coincide, we obtain a singular threefold.

Under certain conditions, the singularities admit a crepant resolution:


we obtain a smooth Calabi-Yau threefold. [Kapustka2 2009]

×

S1

S2

×

Goal: We want to compute periods of such threefolds

“[…] a class of such threefolds which is large enough to exhibit many of the 
phenomena which one wants to study, yet is special enough to be quite tractable.”
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Homology of smooth fibre products

24

We can use the same construction to compute the parabolic homology.

The monodromy representation on  is the 
tensor product of the monodromy representations

H2(E1 × E2)

b
ℓ

Periods of the fibres are products of periods

∫γ1× γ2

ω1 ⊗ ω2 = ∫γ1

ω1 ∫γ2

ω2

H2(E1 × E2) = H0(E1) ⊗ H2(E2) ⊕ H1(E1) ⊗ H1(E2) ⊕ H2(E1) ⊗ H0(E2)

By the Künneth formula, the homology of the fibre is

only component with monodromy

Extensions are fibre products of 
extensions of the elliptic surfaces

Mℓ = M1ℓ ⊗ M2ℓ ∈ GL4(Z )

∫τℓ(γ1×γ2)
ω1 ⊗ ω2 ∧ dt = ∫ℓ (∫γ1

ω1 ∫γ2

ω2) dt
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Homology of smooth fibre products
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The homology group   is generated by extensions, and fibre 
components of  the elliptic surfaces.

H3(T )

H2(S*1 , E1b) ⊗ H1(E2b) ⊕ H2(S*2 , E2b) ⊗ H1(E1b)
H3(T*, Fb) =

Proposition: the homology of the fibre product 
can be recovered from the monodromy 
representation of the elliptic surfaces.

Here  means that we removed one fibre “at infinity’’*

In the case of rational surfaces, we 
recover a result of Schoen: 


 has rank 
.

H3(T )
12 × 2 + 12 × 2 − 4 − 4 = 40

We have an explicit description of these cycles.

We can perform the same integration methods 

∫τℓ(γ1×γ2)
ω1 ⊗ ω2 ∧ dt = ∫ℓ (∫γ1

ω1 ∫γ2

ω2) dt

H2(S*2 , E2b) ⊗ H1(E1b)

H2(S*1 , E1b) ⊗ H1(E2b) Gluing 

boundaries

Homologically 

trivial extensions
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Smoothings and vanishing cycles

26

We reduce to the smooth case by 
smoothing the variety.

We can compute the periods on the orthogonal complement of the lattice of 
vanishing cycles.

This creates new cycles which collapse 
in the singular limit:


the vanishing cycles.

Homologically 

trivial

The one dimensional case Our threefolds



Calabi-Yau operators
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Hadamard products

28

 is generically singular, but we can smooth homogeneously in .Tu u

The holomorphic period of is the Hadamard product of the periods of the underlying surfaces:

        where      and π(u) = ∑

i
aibiui π1(t) = ∑

i
aiti π2(t) = ∑

i
biti

The Hadamard product of two elliptic surfaces  and  is the family of threefolds
S1 S2
Tu = S1 ×u S2 := S1 ×ℙ1 φ*u S2

where , .φu : ℙ1 → ℙ1 ϕu(t) = u /t

 is equipped with a map to  with fibre Tu ℙ1 E1t × E2 u
t

Under some condition on the fibres of  and  at  and , there is 
a maximal unipotent monodromy point at 0.

S1 S2 0 ∞

We are interested in the case where the Picard-Fuchs equation  
has order 4 — see next slides.

ℒHad

It is not known whether we can resolve homogeneously (and crepantly!) in .u
[Golyshev van Straten 2023]
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Calabi-Yau operators

29

Calabi-Yau operators are differential operators in one variable satisfying certain 
conditions:

 be Fuchsian, i.e. having solutions 
that have “nice” singularities

→

 certain integrality conditions on the 
holomorphic solution, instanton 

numbers and -coordinates

→

q

 have a Maximal unipotent 
monodromy point, i.e. such that the 

monodromy around it satisfies 
 and 

→

(M − 1)n = 0 (M − 1)k Σ 0,∀k < n

 be self-dual, some technical notion 
stemming from mirror symmetry

→

order

These operators are expected to be Picard–Fuchs equations of families of algebraic varieties.
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Calabi-Yau operators of order 4

30

[AESZ 2010] gave a list of around 500 Calabi-Yau (CY) operators of order 4 obtained 
partially through an extensive computer search.

They are conjectured to be the Picard-Fuchs equations of varieties 

carrying a motive of type (1,1,1,1).

In many cases, a geometric realisation is 
not known, and in some cases a smooth 

geometric realisation is not known 

(e.g. 14th hypergeometric operator).

There are 14 hypergeometric Calabi-Yau 
operators of order 4 and 105 Hadamard 

products of elliptic surfaces.

In particular this motivates using 
smoothings instead of looking for 

resolutions.
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Parabolic homology
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The parabolic homology  is stable under monodromy.Hpara
3 (Tu)

ℓ
ℓ∂ 

τℓ(γ) ↦ τℓ∂ (γ∂ )

Points move 

around with u

In particular the monodromy matrices have integer coefficients.

In other words this realisation of the  motive carries a local system defined over .(1,1,1,1) ℤ

In all considered cases,  has rank 4 and carries precisely the  motive.Hpara
3 (Tu) (1,1,1,1)

The monodromy with respect to  acts by a braid action on .u π1(ℙ1∖≠u)
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A new Gamma-class formula
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 [Candelas, De la Ossa, Green, Parkes] An ansatz for the period matrix  can also be 
obtained from topological invariants of the family from the formula

Π

(2πi)3

ζ(3)
(2iπ)3 χ c2H

24 0 H3

6
c2H
24

σ
2 − H3

2 0
1 0 0 0
0 1 0 0

⋅

ϖ0
ϖ1
ϖ2
ϖ3

where  form the Frobenius basis at the MUM point(2iπ)iϖi =
i

∑
k=0

hk(t)
logk(t)

k!
and  are the Euler characteristic, the second Chern class 

and the triple intersection numbers of the mirror threefold.
χ, c2H, H3

Using our methods, we can compute this matrix numerically with very high precision (several 
hundred digits) in reasonable time for Hadamard products. 

(2πi)3

ζ(3)
(2iπ)3 χ − α

2
c2H
24 − δ

2
c2H
24

α
2

H3

2 M H3

6
c2H
24 N σ

2 − H3

2 0
1 0 0 0

α N
M N 0 0

⋅

ϖ0
ϖ1
ϖ2
ϖ3

We find a slightly different version which we conjecture to be general:

0 0 M 0
0 0 0 N

−M 0 0 0
0 −N 0 0

with intersection product:

It agrees with the above when  and M = N = 1 δ = α = 0

where ,       and   .χ, c2H, H3 ∈ ℤ α, δ, σ ∈ {0,1} M, N ∈ ℕ
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The 105 Hadamard products

33
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The AESZ list

34

(2πi)3

ζ(3)
(2iπ)3 χ − α

2
c2H
24 − δ

2
c2H
24

α
2

H3

2 M H3

6
c2H
24 N σ

2 − H3

2 0
1 0 0 0

α N
M N 0 0

⋅

ϖ0
ϖ1
ϖ2
ϖ3

The Gamma-class formula

seems to apply to all operators in the 
CYDB (at least up to order 20).

“[…] a class of such threefolds which is large 
enough to exhibit many of the phenomena 

which one wants to study, yet is special 
enough to be quite tractable.”

In some cases  — in particular 
the operator seems to not have 

-integral monodromy.

M Σ N

Sp4(ℤ)
0 0 M 0
0 0 0 N

−M 0 0 0
0 −N 0 0
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The Deligne conjecture

35

with Nutsa Gegelia 
and Duco van Straten

Another application concerns numerical checks of the Deligne conjecture (1979),

which relates a minor  of the period matrix to the value  of the L-function 


via the formula , where .
c+ L(2)

L(2) = qc+ q ∈ ℚ

We are able to numerically recover the value of  for several examples 
with many digits of precision.

q

In many examples of Hadamard products of elliptic surfaces the L-value vanishes.

Instead the Beilinson conjecture applies.

Why?

See also [Yang 2020]



ℙ 1

ℓ

Eb

b

  γ Σ ℓ*γ

ζ(3)
(2iπ)3 χ − α

2
c2H
24 − δ

2
c2H
24

α
2

H 3

2 M H 3

6c2H
24 N σ

2 − H 3

2 01
0 0 0α N

M N 0 0

H
2(E

b)
𝒯

H0(Eb)

Thank you!


