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Abstract

Let C be a smooth complex projective curve with canonical divisor KC very ample.
The general objective of the research is to study the relation between the cup-product

H1(ΘC) −→ H0(OC(KC))∗ ⊗H1(OC)

where ΘC = OC(−KC) is the holomorphic tangent bundle of C, and the geometry of the
canonical embedding of C. The cup-product, following Griffiths, stratifies P(H1(ΘC)) by
the subvarieties Σr according to the rank r of ξ ∈ H1(ΘC), viewed as the linear map

ξ : H0(OC(KC)) −→ H1(OC),

or, equivalently, by the dimension of the kernel of ξ

Wξ = ker(ξ).

The pair (ξ,Wξ) is one of the invariants of the Infinitesimal Variation of Hodge Structure
(IVHS) of Griffiths and his collaborators. We construct a refinement of (ξ,Wξ) by attach-
ing an intrinsic filtration W •

ξ ([φ]) of Wξ, varying holomorphically with [φ] ∈ P(Wξ). The
filtration has geometric meaning:

1) it is related to special divisors on C,
2) it ‘counts’ certain rational normal curves in the canonical embedding of C.
The filtration arises from the skew-symmetric pairing

α
(2)
ξ :

∧2
Wξ

// H0(OC(KC))

naturally attached to the IVHS pair (ξ,Wξ); this could be considered as a ‘symplectic’
structure on Wξ.

It is shown that our refinement gives the well known results about the strata Σ0 and
Σ1:

- Σ0 is empty, if C has no g12 ,
- the stratum Σ1 is the image of the bicanonical embedding of C as long as C has no

g12 , g13 , g25 .
That is, one recovers as corollaries the classical theorems of Max Noether on projective

normality of the canonical embedding and Babbage-Enriques-Petri about the canonical
curve being cut out by quadrics.
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Conceptually, the refinement concerns the incidence correspondence

P = {([ξ], [φ]) ∈ P(H1(ΘC))× P(H0(OC(KC)))|ξφ = 0 in H1(OC)}

which comes with the projections on each factor

P

p1

zz

p2

&&
P(H1(ΘC)) P(H0(OC(KC)))

The left side of the diagram controls the (infinitesimal) variations of complex structure
on C. The refinement exhibits additional structures on the fibres of p1. In particular,
one obtains the stratification of the inverse images p−1(Σr) of the Griffiths’ strata Σr into
substrata where the length of the filtrations W •

ξ (φ), ([ξ], [φ]) ∈ p−1(Σr), remains constant.
On each such substratum new aspects emerge:

- quiver representations,
- Fano toric variety with a distinguished anti-canonical divisor,
- dimer models.
The quiver emerges from the construction and properties of the refinement; the Fano

toric variety arises formally from the graph underling the quiver, but it also has a meaning
of moduli of a sort of Higgs structures of the linear algebra of the refinement. The graph
underlying the refinement becomes an important part of the theory: it connects to topics
such as the Topological Quantum field theory, moduli spaces of elliptic curves with marked
points, modular curves, higher categorical structures.

§ 0 Introduction

This a an expanded version of the lecture I gave at the conference. It is based on the ongoing
research. Many pieces are far from being understood. But the picture which emerges seems to
be interesting enough and related to the topics of the conference: Calabi-Yau varieties, elliptic
curves, connections to physics/mirror symmetry. Let me start by recalling some basics about
the Infinitesimal Variation of Hodge structure.

About forty years ago, in a series of papers Griffiths and his collaborators proposed several
constructions naturally attached to the Infinitesimal Variations of Hodge structure, the IVHS
constructions or invariants for short, see [CGrGH], [GH], [G] and also [G1], for an overview and
additional references on the subject. More precisely, let X be a complex projective manifold
of complex dimension n; denote by ΘX (resp. ΩX) the holomorphic tangent (resp. cotangent)
bundle of X. Then the period map of the variation of Hodge structure on the cohomology
space Hn(X,C) has the differential which can be defined as the cohomology cup product

H1(ΘX) −→
⊕
p+q=n

Hom(Hq(Ωp
X), Hq+1(Ωp−1

X ))

coming from the obvious contraction morphism

ΘX −→ Hom(Ωp
X ,Ω

p−1
X ),

where Ωa
X =

∧a ΩX is the sheaf of germs of holomorphic a-forms on X. As an illustration and
one of the successful applications of the IVHS constructions one often cites the case n = 1,
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that is X is a smooth complex projective curve and we switch to using C instead of X. The
above cup product becomes

H1(ΘC) −→ Hom(H0(ΩC), H1(OC)).

Here the cotangent bundle ΩC is the canonical line bundle of C which we write OC(KC),
where KC is the canonical divisor class of C, the tangent bundle ΘC = OX(−KC), the dual
of OC(KC), and the above cup product becomes

H1(OC(−KC)) −→ Hom(H0(OC(KC)), H1(OC)) = H0(OC(KC))∗ ⊗H1(OC)

∼= H0(OC(KC))∗ ⊗H0(OC(KC))∗,
(0.1)

where the last equality comes from Serre duality H1(OC) ∼= H0(OC(KC))∗.
One of the insights of Griffiths about the differential of the period map could be summa-

rized as follows:
the study of the degeneracies of the cup product involved in the differential of the period

map leads to important facts about geometry of the projective varieties as well as their moduli
spaces.

In fact, Griffiths in [G] attaches to the cup product (0.1) the determinantal varieties

Σr := {[ξ] ∈ P(H1(ΘC))| ξ : H0(OC(KC)) −→ H1(OC), rk(ξ) ≤ r}, (0.2)

for all r ∈ [0, g], which are the degeneracy loci of the morphism of sheaves

H0(OC(KC))⊗OP(H1(ΘC))(−1) −→ H1(OC)⊗OP(H1(ΘC)).

This gives the stratification

P(H1(ΘC)) = Σg ⊃ Σg−1 ⊃ · · · ⊃ Σ1 ⊃ Σ0. (0.3)

The stratum Σ0 controls the kernel of the differential of the period map. Thus the statement

Σ0 is empty (0.4)

is equivalent to the Infinitesimal Torelli for curves. The dual version of (0.1) together with
(0.4) becomes the classical theorem of Max Noether: the canonical embedding of a curve is
projectively normal, see [G-H]. Thus the knowledge about the degeneracy stratum Σ0 is equiv-
alent to an important geometric fact - the projective normality of the canonical embedding,
and the Infinitesimal Torelli theorem - the period map is an immersion.

Griffiths goes further and shows that the next stratum, Σ1, is precisely the image of C
under the bicanonical morphism, the one defined by OC(2KC), provided one knows another
fundamental fact in the theory of curves, the Babbage-Enriques-Petri theorem. That theorem
says that for smooth, complex projective curves with no special linear systems g1

2, g1
3, g2

5, the
canonical curve is determined as the intersection of all quadrics passing through it, see [StD],
also [M] for an inspiring overview. Thus Griffiths theorem

{ C has no g1
2, g1

3, g2
5} ⇔ {Σ1 = the bicanonical image of C}

tells us that the degeneracy locus Σ1 is tied to the important fact about the geometry of the
canonical embedding, the ideal is generated by quadrics, and provides a proof of the generic
global Torelli theorem for curves.
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One would expect that the higher strata in (0.3), in a similar way, contain interesting facts
about the geometry of curves as well as their moduli spaces. It is with this thinking that the
author embarked on the investigations of the strata Σr. In this work we propose a refinement
of the Griffiths stratification (0.3). This, in particular, will recover known results about the
strata Σ0 and Σ1, independently of the old classical theorems quoted above.

§ 1 Refinement of IVHS - the main result

The refinement concerns the Kodaira-Spencer classes of rank r parametrized by the locally
closed strata

Σ0
r := Σr \ Σr−1.

By definition each stratum Σ0
r comes equipped with a distinguished vector bundle of rank

(g − r) whose fibre at a point [ξ] ∈ Σ0
r is the subspace

Wξ := ker
(
H0(OC(KC))

ξ−→ H1(OC)
)
,

of the canonical space H0(OC(KC)). For every nonzero φ ∈ Wξ our refinement attaches an
intrinsic filtration of Wξ

Wξ = W 0
ξ ([φ]) ⊃W 1

ξ ([φ]) ⊃ · · · ⊃W l
ξ([φ]) ⊃W l+1

ξ ([φ]) = 0. (1.1)

Some of the properties of this filtration are summarized in the following statement.

Theorem 1.1 The filtration (1.1) is subject to the following properties.
• W l

ξ([φ]) ⊃ Cφ and if the inclusion is strict, then there is a special line bundle L on C

such that H0(L) is at least two dimensional: there is a plane Pφ in W l
ξ([φ]) containing Cφ

and injecting into H0(L).
• For every i ∈ [2, l−1] (one assumes here that l ≥ 3), the graded pieces W i

ξ([φ])/W i+1
ξ ([φ])

of the filtration parametrize cones over rational normal curves of degree i containing the
hyperplane section

Zφ = (φ = 0) ⊂ C ⊂ P(H0(OC(KC))∗)

of C in its canonical embedding.

This could be viewed as a generalization of the features encountered in the discussion of
the strata Σi, for i = 0, 1. Namely, the line bundle in the first item of the theorem should be
viewed as a special linear system on C (in the case of Σ0 it is g1

2, and for Σ1 these are g1
2,

g1
3, g2

5 of the classical theorem of Babbage-Enriques-Petri), and the second item is related to
quadrics through the canonical image of C.

More conceptually, our refinement takes place on the cohomological incidence correspon-
dence

P = {([ξ], [φ]) ∈ P(H1(ΘC))× P(H0(OC(KC)))|ξφ = 0 in H1(OC)}
which comes with the projections on each factor

P
p1

yy

p2

&&
P(H1(ΘC)) P(H0(OC(KC)))

(1.2)
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The left side of the diagram controls the (infinitesimal) variations of complex structure on C
with the fibre over a point [ξ] being the projectivization of the space Wξ. The right hand
side of the diagram is related to the canonical embedding of C via the geometric incidence
correspondence

ZC = {([φ], x) ∈ P(H0(OC(KC)))× C|φ(x) = 0}

and its two projections

ZC
q1

ww

q2

((
P(H0(OC(KC))) C ⊂ P(H0(OC(KC))∗)

Putting the two incidences together gives the diagram

P
p1

zz

p2

&&

ZC
q1

ww

q2

((
P(H1(ΘC)) P(H0(OC(KC))) C ⊂ P(H0(OC(KC))∗)

(1.3)

On the left side we have the cohomological incidence correspondence and on the right side
the geometric correspondence. One of the goals of IVHS constructions could be summarized
as gaining information on the geometric side from relevant data on the cohomological side.

Theorem 1.1 provides an extra structure along the fibres of the projection p1 on the
cohomological side and gives a partial translation of these data in terms of the geometry of
C and its canonical embedding. One can make a case, and this is done in [R5], that our
refinement is a sort of algebraic ‘Kähler structure’ on Wξ depending on [φ] in P(Wξ), a sort
of hard Lefschetz decomposition of Wξ varying with [φ] in P(Wξ). This point of view seems
to be quite fruitful since it leads to uncovering ‘hidden’ structures of the filtrations (1.1) such
as quivers, Fano toric varieties, dimer models. This in turn provides intriguing connections
with such topics as quantum-type invariants, elliptic curves, number theory, mirror symmetry.
Perhaps the unifying theme of all those connections is the higher categorical structures of the
IVHS. At this stage we do not attempt to address this possibility formally, however, various
aspects of the refinement presented here strongly point in this direction. The main objective
of this writing is to explain

- the constructions of the refinement of IVHS,
- its connections with classical topics in the curve theory,
- how all of the above mentioned ‘hidden’ structures arise,
- indicate how some of the topics listed above connect with the refinement of IVHS.

In the rest of the paper we give a brief overview of the results and constructions involved
and sketch the logical connections between them. Hopefully, this will provide a guide for the
reader to browse through the sections of the full text of the forthcoming paper, [R5].
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§ 2 Algebraic Kähler structure of Wξ and the quiver attached
to it

The filtrations of Wξ in (1.1) attached to points ([ξ], [φ]) in the cohomological incidence
correspondence P in (1.3) arise from a certain linear map

α
(2)
ξ :

∧2Wξ −→ H0(OC(KC)) (2.1)

naturally attached to the pair ([ξ],Wξ), a two-form with values in H0(OC(KC)). This turns
out to be only part of the structure. Using the Hodge metric on H0(OC(KC)) we can break
Wξ into orthogonal pieces, that is, there is an intrinsically defined orthogonal decomposition

Wξ =

lξ([φ])⊕
r=0

P r([ξ], [φ]), (2.2)

where lξ([φ]) is the length of the filtration in (1.1). This decomposition is related to the
filtration by the formula

W s
ξ ([φ]) =

lξ([φ])⊕
r=s

P r([ξ], [φ]).

In addition to the decomposition, the linear map (2.1) gives rise to the linear map

α
(2)
ξ (φ, •) : Wξ −→ H0(OC(KC)).

The last summand P lξ([φ])([ξ], [φ]) of the decomposition turns out to be α
(2)
ξ (φ, •)-invariant.

More precisely, we have the endomorphism

α̂(2)
ξ(φ, •) : P lξ([φ])([ξ], [φ])/Cφ −→ P lξ([φ])([ξ], [φ])/Cφ. (2.3)

The study of this endomorphism underlies the assertion about the linear system in Theorem
1.1: we establish a precise dictionary between the eigen spaces of the endomorphism and
certain special linear systems on C

{the spectrum of α̂(2)
ξ(φ, •)} −→ {special line bundles on C}. (2.4)

Thus the last piece of our filtration establishes links, on the one hand, to classical problems
in curve theory such as special divisors, and on the other hand, to Brill-Noether loci in the
moduli space of curves.

We now turn to other summands of the decomposition (2.2). Every summand P s([ξ], [φ]),

for s ∈ [0, lξ([φ])− 1], is sent by α
(2)
ξ (φ, •) to the direct sum

lξ([φ])⊕
r=s−1

P r([ξ], [φ]),

and where the summand P−1([ξ], [φ]) is understood as the orthogonal complement W⊥ξ of Wξ

in H0(OC(KC)) with respect to the Hodge metric. Observe that this means that the step
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W s
ξ ([φ]) of the filtration is sent to the step W s−1

ξ ([φ]), for every s ≥ 1, a sort of Griffiths
transversality property in the classical variation of Hodge structure.

For the integers r, s in [0, lξ([φ]) − 1], denote by αr,s the block of α
(2)
ξ (φ, •) mapping the

summand P s([ξ], [φ]) to P r([ξ], [φ]). We encode part of these data in the following graph:
• for every summand P r([ξ], [φ]), r in the range of [0, lξ([φ])− 1] of the orthogonal decom-

position of Wξ, we draw two vertices on the same vertical level; color the top one white ◦,
and the bottom one black •; place the labels r at the white (top) vertex and the label r′ for
the black (bottom) in the decreasing order from left to right for r ∈ [0, lξ([φ])− 1];
• the edges of the graph are drawn between the vertices of different colors only; this is

done according to the rule: the top vertex r is connected to the bottom r′ and its immediate
neighbors (r − 1)′ and (r + 1)′.

The resulting graph is denoted PGlξ([φ]). The following drawing illustrates the graph PG5,
for lξ([φ]) = 5:

4

4′

3

3′

2

2′

1

1′

0

0′

By orienting the edges from ‘white’ to ‘black’ we think of PGlξ([φ]) as a quiver. It should
be clear, that the graph is constructed so that the orthogonal decomposition of Wξ in (2.2)
together with the maps αr,s provide a representation of the quiver PGlξ([φ]). Namely, we place
the summand P r([ξ], [φ]) at the vertices r and r′, for every r in the range [0, lξ([φ])− 1]; the
vertical edges of the graph are decorated with the endomorphisms

αr,r : P r([ξ], [φ]) −→ P r([ξ], [φ]),

the edges (r)→ (r − 1)′ are decorated with the maps

αr,r−1 : P r([ξ], [φ]) −→ P r−1([ξ], [φ]),

for every r ∈ [1, lξ([φ])− 1], and the edges r → (r + 1)′ with the maps

αr,r+1 : P r([ξ], [φ]) −→ P r+1([ξ], [φ]),

for every r ∈ [0, lξ([φ])− 2].
The following picture emerges:
- the filtrations attached to points of the cohomological incidence correspondence P in

(1.3) equip it with the length function

l : P −→ N

sending a point ([ξ], [φ]) to the length lξ([φ]) of the filtration of Wξ in (1.1); this is a con-
structible function and it stratifies each stratum Σ0

r of Griffiths stratification into the finer
strata according to the values of the length function l;
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- fix a value l in the range of the length function and consider the stratum

Ll := l−1(l);

for the rest of the discussion we assume that l is at least 3; from the above it follows:
• the stratum Ll comes along with the graph PGl; that graph is bipartite - its vertices are

colored white/black and edges connect vertices of different colors only; with the orientation
of edges ‘white’-to-‘black’ PGl is a quiver;
• the points of Ll provide quiver representations of PGl according to the rules discussed

above;
• the stratum Ll can be decomposed further into the substrata where the dimensions of the

graded pieces of the filtration W •ξ ([φ]) remain constant; each such substratum is denoted by

Ll(h
l, λ): hl is the dimension of the last piece of the filtration and λ is the partition associated

to the graded module

Wξ/W
l
ξ [φ] =

l−1⊕
s=1

P s([ξ], [φ]).

The length strata Ll and their substrata Ll(h
l, λ) provide a geometric part of our refine-

ment of IVHS; the quiver PGl and Ll, viewed as a parameter space for representations of
PGl, constitute an algebraic part of the refinement.

§ 3 The graph underlying the quiver and the associated Fano
toric variety

The graph PGl is used to introduce another geometric object of our refinement: a Fano toric
variety. It can be done formally starting from PGl as follows: assign the indeterminate T to
all vertical edges of the graph, the indeterminates Xr to the edges (r) → (r − 1)′, and Yr to
the edges (r − 1)→ (r)′, for r ∈ [1, l − 1]; we think of

{T,Xr, Yr | r ∈ [1, l − 1]}

as linear forms on the vector space V2l−1 freely generated by the vertices {(r), (r)′| r ∈ [1, l−1]}
and the symbol {e0} which stands for the vertical edge (0)→ (0)′; the form T vanishes on all
vertices and T (e0) = 1, the forms Xr’s (resp., Yr’s) form the dual basis for the white (resp.,
black) vertices and vanishes on the black (resp., white) ones. Next we write down the system
of quadratic equations

XrYr = T 2, r = 1, . . . , l − 1;

this gives a system of quadrics in P(V2l−1) ∼= P2(l−1) and we define our variety as the complete
intersection of those quadrics; this variety is denoted H1,0(PGl) in the main body of the
article. The following statement summarizes its properties.

Proposition 3.1 The variety H1,0(PGl) is a singular Fano toric variety in the projective
space P(V2l−1) = P2(l−1). It has dimension (l − 1) and degree 2l−1.

The hyperplane T = 0 intersects H1,0(PGl) along the divisor denoted H0. This divisor is
the union of 2l−1 projective subspaces. More precisely, for every subset A ⊂ [1, l−1] denote by
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Ac its complement in [1, l − 1] and let ΠA be the projective subspace of the hyperplane T = 0
spanned by the points of P(V2l−1) underlying the vectors

{(s), (t)′|s ∈ A, t ∈ Ac} ⊂ V2l−1;

then we have
H0 =

⋃
A⊂[1,l−1]

ΠA,

where the union is taken over all subsets A of [1, l − 1].

The hyperplane sections of H1,0(PGl) are (singular) Calabi-Yau varieties. The divisor H0

in the proposition is a particular degenerate case. For the reasons explained in the article
[R5], it is called Lagrangian cycle and its irreducible components, the projective spaces ΠA in
the proposition, could be considered as Lagrangians. We suggest that these should be objects
of a Fukaya-type category. This is a subject for a future research. For now we wish to explain
the relation of the variety H1,0(PGl) to the quiver representation side of the graph PGl.

So far the variety H1,0(PGl) and its Lagrangian cycle H0 are defined formally and their
relevance to algebraic Kähler structures is not clear. So the appearance of this Fano variety
may strike the reader as completely artificial. This is not so, since the quadratic equations
defining H1,0(PGl) arise from natural deformations of the quiver representations of PGl. Let
us briefly explain this.

For this we return to the middle of the incidence diagram (1.3), the projective space
P(H0(OC(KC))). If we start with a nonzero subspace W in H0(OC(KC)), then the co-
homological incidence correspondence P produces the subspace of Kodaira-Spencer classes
annihilating W :

ΞW := {ξ ∈ H1(ΘC)|ξφ = 0, ∀φ ∈W}.

We assume that the dimension of W is at least two and ΞW is nonzero. Our algebraic Kähler
structure gives linear maps

α
(2)
ξ (φ, •) : Wξ −→ H0(OC(KC)).

By construction W is contained in every Wξ as ξ varies in ΞW . Restricting the maps α
(2)
ξ (φ, •)

to W , we obtain the map

W −→ (ΞW )∗ ⊗Hom(W,H0(OC(KC)))

The main point is that this is a sort of Higgs field. More concretely, the operators α
(2)
ξ (φ, •)

are commuting in the following sense: for ξ 6= ξ′ in ΞW we have the equality

α
(2)
ξ (φ, α

(2)
ξ′ (φ, ψ)) ≡ α(2)

ξ′ (φ, α
(2)
ξ (φ, ψ)) mod Cφ, (3.1)

whenever the compositions are defined. This in turn produces commutation relations between

the blocks {αr,sξ (φ)} and {αr,sξ′ (φ)} of α
(2)
ξ (φ, •) and α

(2)
ξ′ (φ, •). Now we deform the operators

α
(2)
ξ (φ, •) and α

(2)
ξ′ (φ, •)

Dξ(t,x,y) = t
l−1∑
r=0

αr,rξ (φ) +
l−1∑
r=1

xrα
r−1,r
ξ (φ) +

l−2∑
r=0

yr+1α
r+1,r
ξ (φ) +

∑
s−r≥2

αs,rξ (φ),
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by introducing deformation parameters x = (xr) and y = (yr) in Cl−1 and t ∈ C, for
blocks decorating the edges of the graph PGl. We wish to deform so that the commutativity
condition (3.1) would be conserved. The direct computation gives the system of quadratic
equations in the formal definition of H1,0(PGl). We also gain a conceptual understanding:
H1,0(PGl) is a parameter space of Higgs fields. This is the reason for the notation alluding
to (1, 0)-forms as well as the name used in the main body of the paper - nonabelian Dolbeault
variety.

Though the defining equations of H1,0(PGl) come from the deformations of quiver rep-
resentations arising from our refinement, the variety itself depends on the graph only. It
completely forgets our curve C. The situation is reminiscent of the classical Jacobian of a
curve which takes into account only cohomological data of a curve. The connection with the
curve is restored through the Abel-Jacobi maps. Following the analogy with the classical
situation, we construct several naive versions of Abel-Jacobi maps:

- the maps from Ll to H1,0(PGl) \H0, the complement of the Lagrangian cycle,
- the dual of the above assigning to the points of Ll hyperplane sections of H1,0(PGl),
- for a nonzero section φ ∈ H0(OC(KC)) we distinguish the stratum Ll(φ) of Ll together

with the map into the ring C(C)[u, u−1] of Laurent polynomials with coefficients in the func-
tion field C(C) of C.

The constructions are given in [R5]. Here we wish to point out the meaning of the second
and the third maps. The reader may recall that the hyperplane sections of H1,0(PGl) are
singular Calabi-Yau varieties, so the second map connects the points of Ll with Calabi-Yau
varieties, that is, Ll becomes a parameter space for families of Calabi-Yau varieties. This
could be a source of many interesting invariants supported on Ll.

For the third map, the reader will need to recall the diagram in (1.3) connecting the
cohomological and geometrical incidence correspondences. Conceptually, the third map es-
tablishes a connection between the two parts of the diagram: a point [φ] in the middle space
P(H0(OC(KC))) of the diagram defines the stratum Ll(φ) in the cohomological incidence P
and relates it to the function field of C on the geometrical part of the diagram. The ‘strange’
appearance of Laurent polynomials will become more natural and interesting once we discuss
the next aspect of the refinement.

§ 4 From algebraic Kähler structure of Wξ to dimer models

We already said that the graphs PGl associated to the strata Ll are bipartite, that is, the
vertices come in two different colors (white and black) and each edge of the graph connects
vertices of different colors. The graphs of this type are called dimer models and have been
intensively studied in recent years in connection with mirror symmetry. There is a vast physics
and mathematics literature on the subject. We cite [Go-K] and references therein for more
details on the subject.

The graph PGl is a dimer model with the special property that it is ‘almost’ trivalent:
all vertices have valance 3 except the first and the last pair, that is the vertices with labels
(0), (0)′ and (l − 1), (l − 1)′. We turn PGl into a trivalent dimer model by connecting the
vertex (0) to (l−1)′ and the vertex (l−1) to (0)′, in accordance to the pattern of edges at the

intermediate vertices. The graph obtained this way is denoted P̂Gl. Below is the illustration
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of the graph P̂G4.

3

3′

2

2′

1

1′

0

0′

The graph P̂Gl is endowed with a structure of a ribbon graph, that is, we choose a cyclic
order of edges at every vertex: our choice is counterclockwise, starting with the vertical
edge. This ribbon graph structure turns P̂Gl into a retract of a topological torus T with l
disks removed; the boundary of the disks are so called boundary cycles B0, B1, . . . , Bl−1 of the
ribbon graph P̂Gl; they are labeled by the white vertices. We obtain what in physics literature
is called ‘brane tilings’, the ‘tiles’ in reference to the polygons formed by the boundary cycles,
see [Ken] for physics oriented overview of the subject. In the situation of P̂Gl all tiles happen
to be hexagons; all this is discussed and worked out in [R5].

While the graph PGl underlies the quiver representations of our IVHS refinement, the
completed graph seems to lack this connection. In fact, one of the main features of P̂Gl is
the following extension property.

Proposition 4.1 Given a representation ρ = {αr,s : P s −→ P s} of the quiver PGl, it can

be extended in a canonical way to the representation of the quiver P̂Gl. Those canonical
extensions are parametrized by pairs of linear functionals on the space of Laurent polynomials
C[q, q−1].

The details and consequences of this statement are given in [R5]. Let us discuss the result
and its proof informally.

What has been done so far is a finer stratification of the incidence correspondence P(WΣ0
r
)

over Σ0
r : it is divided into the strata Ll where the length of filtrations is fixed and equal to

l. The graph PGl appears as a bookkeeping device for arranging those filtrations as quiver
representations of PGl. The graph could be viewed as ‘open’ in a sense that its quiver
representation

ρ = {αr,s : P s −→ P r}

has ‘ends’, the spaces P 0 and P l−1; those could be viewed as ‘output’ objects of the quiver
representations associated to our filtrations; the obvious morphisms are the vector spaces

P−([ξ], [φ]) := HomC(P 0([ξ], [φ]), P l−1([ξ], [φ])),

P+([ξ], [φ]) := HomC(P l−1([ξ], [φ]), P 0([ξ], [φ]))

between the end objects; to simplify the notation we will often omit the reference to the point
([ξ], [φ]) in Ll, but the reader should keep in mind this variation.
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The graph P̂Gl connects the ends of the graph PGl combinatorially/topologically by
introducing the additional edges. The proposition tells us that we can consistently label
those edges using the data of the representations of the ‘open’ graph and some ‘quantum’
parameters, the space HomC(C[q, q−1],C). Concretely, the proof of the proposition tells us
that there are distinguished linear maps

τ± : HomC(C[q, q−1],C) −→ P±

which allow to connect the ‘end’ objects of the quiver representations of PGl. Observe the
appearance of Laurent polynomials: here they appear naturally as traces of loop versions
of certain Lie algebras attached to the quiver representations. The technical part of the
construction of τ± involves certain closed paths on P̂Gl called zig-zag paths, see [R5] for
details.

Thus the above maps is an extra structure on the morphisms between the end objects
of the representations of the quiver PGl. One could wonder if we have morphisms between
morphisms and if those have additional structures. In other words, we are asking for higher
categorical structures of the IVHS. In [R5] we provide indications that this might be the case.
There are two different directions: one connects to symplectic geometry and the other to the
ideas of the Topological Quantum field theory (TQFT), see [At]. The first stems from the
fact that the space

P ([ξ], [φ]) = P−([ξ], [φ])⊕ P+([ξ], [φ])

combining the morphisms between the end objects is naturally a symplectic vector space: this
is due to the fact that the two summands are dual to each other. We construct Lagrangian
subspaces in P ([ξ], [φ]) which could be viewed as 1-morphism; symplectic morphisms between
those Lagrangians could be 2-morphisms and a possible connection to Fukaya categories arises.

The second direction uses the fact that the graph P̂Gl is a dimer model and as such it
comes with the set of perfect matchings - configurations of edges which cover all vertices of
the graph and precisely once. We suggest that this set can be categorified and this could
provide higher order ‘multiplications’ in the tensor algebra of the graded space Wξ/W

l
ξ([φ]),

see [R5] for details.

The extension of the representations of PGl to the ones of the quiver P̂Gl has a geometric
counterpart: the strata Ll become related to the moduli spaces Ml

1 of elliptic curves with

l marked points. This relation comes from metrics on the ribbon graph P̂Gl and then one
appeals to the general theory relating metrized ribbon graphs with the moduli spaces of curves
with marked points, the theory which goes back to the works of Harer, Mumford, Penner,
Thurston, see [Har], [MuP] for overviews. The main point is that a quiver representation

of P̂Gl determines a metric on P̂Gl and this metric turns the topological torus T into an
elliptic curve with l marked points, the barycenters of the boundary cycles of P̂Gl. This is
the contents of the following.

Proposition 4.2 Given a representation ρ = {αr,s : P s −→ P s} of the quiver PGl, it can

be extended in a canonical way to the representation of the quiver P̂Gl. Those canonical
extensions are parametrized by pairs of linear functionals on the space of Laurent polynomials
C[q, q−1]. For every pair (F,G) of such functionals one obtains a continuous map

℘l(F,G) : Ll −→Ml
1.

12



In other words we have a continuous map

℘l :
(
HomC(C[q, q−1],C)

)2 −→ (
Ml

1

)Ll
.

which sends a pair (F,G) on the left side to the map ℘l(F,G).

The maps ℘l(F,G) divide Ll into substrata, the fibres of ℘l(F,G), to which is attached
a particular elliptic curve with l marked points. One also can phrase the above result as
attaching to each point of Ll families of elliptic curves with l marked points, where the families
are parametrized by the space

(
HomC(C[q, q−1],C)

)2
. In other words we can rewrite the map

℘l in Proposition 4.2 as follows

℘l : Ll −→
(
Ml

1

)(HomC(C[q,q−1],C))
2

.

The graph P̂Gl has another particular feature: it is endowed with a distinguished auto-
morphism of order l. This automorphism is denoted by σl. By choosing a metric on P̂Gl
invariant with respect to σl allows us to be more precise about the marked points: if l is at
least four, the marked points form a cyclic subgroup of order l in the corresponding elliptic
curve and the subgroup comes with a particular choice of a generator. In other words, the
σl-invariant metrics on P̂Gl take us to the modular curve Y1(l), the moduli of pairs (E, p)

where E is an elliptic curve and p is a point of order l in E. Actually, any metric of P̂Gl can be
made σl-invariant by choosing a triple of standard symmetric polynomials in l indeterminates.
It is well-known that the standard symmetric functions, such as monomial, elementary, power
functions are parametrized by partitions, see [Mac]. Thus once we specify which symmetric

functions we associate to partitions, the σl-invariant metrics of P̂Gl can be obtained by start-
ing from any metric on P̂Gl and then making it σl-invariant according to a choice of a triple
of partitions having at least l parts.

Proposition 4.3 Assume l ≥ 4. For any triple of partitions

µ = (µ0, µ+, µ−)

with at least l parts, the map ℘l in Proposition 4.2 gives rise to the continuous map

℘l,µ : Ll −→ (Y1(l))(HomC(C[q,q−1],C))
2

.

The reader may recall that the strata Ll are further stratified into the substrata Ll(h
l, λ)

where the labels (hl, λ) are respectively the dimension of the l-th piece of filtration and λ is
the partition associated to the dimensions of the graded pieces of the quotient Wξ/Wξ([φ]).
In addition, the partition λ′ conjugate to λ has exactly l parts. Thus the substrata Ll(h

l, λ)
become canonical labels for the maps of Ll into the modular curve Y1(l)

Proposition 4.4 Assume l ≥ 4. Then each substratum Ll(h
l, λ) of Ll gives rise to a distin-

guished continuous map
℘l,λ : Ll −→ Y1(l).

The connection of the IVHS refinement with the moduli spaces of the elliptic curves
suggests other possibilities of categorifications as well as links to number theory, automorphic
forms.
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§ 5 Further research direction and applications

There are several obvious directions to explore:
• to apply the refinement constructions to study families of curves; in particular, to apply

them to study surfaces with nonhyperelliptic fibrations and, more generally, smooth projective
varieties fibred by nonhyperelliptic curves of genus g,
• to develop IVHS refinement for higher dimensional varieties, in particular, compact

complex manifolds with the canonical bundle very ample,
• to study the categorical aspects of the IVHS refinement.
As we alluded to at various points of the introduction, the connections with number theory

emerge: this comes from the possibility to label the extensions of quiver representations in
Proposition 4.1 by arithmetic objects coming from number fields or from the fields of functions
of curves over finite fields, see [R5] for more details.

Our refinement of IVHS naturally connects to quivers, Fano toric varieties, dimers on a
trivalent graphs. Those topics figure prominently in actual research in connection with mirror
symmetry. The following is a speculative perspective on our constructions from the point of
view of mirror symmetry .

§ 6 The mirror symmetry perspective

Let us go back to the diagram (1.3). As we explained earlier in the introduction, our refinement
consists of attaching to the IVHS pair ([ξ],Wξ) on the cohomological side of the diagram the
filtrations of Wξ varying holomorphically with [φ] ∈ P(Wξ). It was also alluded to that this
could be envisaged as a sort of Kähler structure varying with [φ]. Part of this structure,
according to the second item of Theorem 1.1, ‘counts’ certain rational normal curves in the
projective space P(H0(OC(KC))∗), the bottom right of the diagram (1.3). This invokes some
of the ingredients of Mirror symmetry: the objects, say Calabi-Yau varieties, are equipped
with two structures - holomorphic and symplectic (B-side and A-side in physics parlor); for
two mirror objects M and M ′, the mirror symmetry predicts ‘isomorphisms’ between sides of
different nature, that is, the B-side (resp. A-side) of M is ‘isomorphic’ to the A-side (resp.
B-side) of M ′. From this perspective our suggestion is

•every part of the diagram (1.3) should come with its A- and B- sides;

•the adjacent parts of the diagram are related by functorial equivalences

between the sides of different nature.

(6.1)

For example, on the bottom left, P(H1(ΘC)) is the projectivization of the space of the in-
finitesimal variation of complex structures on C; this qualifies for the B-side; our refinement
could be viewed as algebraic Kähler structures along the arrow p1 of the diagram and this
is (a part of) A-side. This A-side should be functorially related to the B-side in the middle
of the diagram and that one to the A-side on the bottom right. Rational normal curves in
P(H0(OC(KC))∗) related to the canonical embedding of C should qualify for (a part of) the
A-side of the canonical embedding C ⊂ P(H0(OC(KC))∗). The second item of Theorem 1.1
relating algebraic Kähler structures on P(H1(ΘC)) to the rational normal curves related to
the canonical embedding of C could be viewed as an example of the hypothetical functorial
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relations in (6.1). The Hilbert polynomial

H[ξ],[φ](q) =

l∑
i=0

dim
(
W i
ξ/W

i+1
ξ

)
qi

of the filtration (1.1) could be viewed as a numerical output of this functorial relation. Ac-
cording to Theorem 1.1, the function counts the dimensions of families of certain rational
curves related to the canonical embedding of C, a sort of Gromov-Witten type invariant.

The homological Mirror symmetry conjecture of Kontsevich recasts Mirror symmetry as
equivalences between pairs of categories attached to each of the mirror partners, [K]. In the
case of Calabi-Yau varieties the two categories are the derived category of coherent sheaves,
the holomorphic or B-side, and Fukaya category, the symplectic or A-side; for mirror partners
M and M ′ the conjecture predicts the equivalences of

- the derived category of M with the derived Fukaya category of M ′,
- the derived Fukaya category of M with the derived category of M ′.
In view of the homological mirror symmetry conjecture of Kontsevich the suggestion (6.1)

can be restated as follows:

•every part of the diagram (1.3) should come with two types of categories:

one related to the derived category of coherent sheaves,

the other to the Fukaya category of some (auxiliary) varieties;

•the adjacent parts of the diagram are related by equivalences

between the categories of different type.

(6.2)

Let us see how our situation fits into this pattern. The starting point for our constructions is
to view the Kodaira-Spencer classes ξ in H1(ΘC) as the extension classes via the identification

H1(ΘC) = H1(OC(−KC)) ∼= Ext1(OC(KC),OC).

In other words, a nonzero Kodaira-Spencer class ξ is viewed as the corresponding extension
sequence

0 // OC // Eξ // OC(KC) // 0. (6.3)

This way the B-side of P(H1(ΘC)) becomes related to the category of (short) exact complexes
(up to the C×-action by the multiplication on the arrows of the complex) on C. Furthermore,
on the cohomology level we have the exact complex

0 // H0(OC) // H0(Eξ) // H0(OC(KC))
ξ // H1(OC),

where the rightmost arrow is the cup product with ξ. In particular, if the rank of the map

H0(OC(KC))
ξ // H1(OC)

is r, that is the point [ξ] lies in the open stratum

Σ0
r := Σr \ Σr−1,
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then the rank 2 bundle Eξ in the middle of the extension sequence has the property

h0(Eξ) = g − r + 1.

More precisely, our space

Wξ = ker
(
H0(OC(KC))

ξ−→ H1(OC)
)
,

is a part of the following exact sequence

0 // H0(OC) // H0(Eξ) //Wξ
// 0. (6.4)

The pair of two exact sequences

0 // OC // Eξ // OC(KC) // 0,

0 // H0(OC) // H0(Eξ) //Wξ
// 0,

(6.5)

could be viewed as a lifting of the IVHS data

([ξ],Wξ)

to the category of perfect complexes on C with an extra data on the level of global sections.
Thus we have a natural way to relate P(H1(ΘC)) equipped with the Griffiths stratification
and the arrow p1 of the diagram (1.3) to the derived category of coherent sheaves on C.

The categorical data (6.5) has an additional structure: the space of the global sections
H0(Eξ) comes along with the exterior product∧2H0(Eξ) // H0(

∧2 Eξ) = H0(OC(KC)), (6.6)

since the extension sequence (6.3) implies
∧2 Eξ = OC(KC). This could be viewed as an

H0(OC(KC))-valued two-form attached to ([ξ],Wξ). The above exterior product is related to
the one we have seen in (2.1). It is an essential ingredient in constructing the filtration (1.1).
We suggest to view it as a sort of ‘symplectic’ structure attached to ([ξ],Wξ). This should
eventually lead to Fukaya-type categories related to the left side of the diagram (1.3).

From the discussion on the nonabelian Dolbeault space H1,0(PGl) as the parameter space
of Higgs structures we also have a glimpse at the categories in the middle of the diagram
(1.3): the objects are projective subspaces P(W ) in P(H0(OC(KC))) with the subspace ΞW
of H1(ΘC) annihilating W - the data delivered by the cohomological correspondence P . Over
P(H0(OC(KC))) we also have the geometric correspondence

q1 : ZC −→ P(H0(OC(KC))).

On this side the basic sheaf object is the direct image

(q1)∗(OZC ) = (q1)∗(q
∗
2OC)
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of the structure sheaf OZC of ZC . This is locally free with the fibre over a point [φ] ∈
P(H0(OC(KC))) being the space

H0(OZφ)

of functions on the divisor Zφ = (φ = 0), the zero locus of φ. The fibre of the projection

p2 : P −→ P(H0(OC(KC)))

in (1.3) over [φ] is the projectivization of the kernel Ξφ of the map

H1(ΘC) = H1(OC(−KC))
φ−→ H1(OC)

and we can see its relation to the space H0(OZφ). Namely, the above multiplication by φ on
the cohomology level comes from the exact sequence of sheaves on C

0 // OC(−KC)
φ // OC // OZφ // 0.

This gives rise to the exact sequence

0 // H0(OC) // H0(OZφ) // Ξφ // 0.

The subspace ΞW is contained in Ξφ for all nonzero φ ∈W . Lifting this subspace to H0(OZφ)

gives a distinguished subspace Ξ̃W (φ) of functions on Zφ containing the subspace of constant

functions. As [φ] varies in P(W ) the subspaces Ξ̃W (φ) fit together to form a subsheaf, call
it XW , of the restriction of the sheaf (q1)∗(OZC ) to P(W ). Thus the cohomological pair
(P(W ),ΞW ) lifts to the level of coherent sheaves supported on P(W ), the pair (P(W ),XW ):

(P(W ),ΞW ) // (P(W ),XW ).

We can do more: the subspaces Ξ̃W (φ) produce the filtrations of H0(OZφ) which are cousins
of the filtrations (1.1) on the side of P(H1(ΘC)). This in turn leads to the graphs of the same
type as PGl as well as to its own nonabelian Dolbeault varieties with their Lagrangian cycles!
The suggestion (6.2) gains somewhat in substance.

At this stage the suggestion formulated in (6.2) serves as a working hypothesis. However,
by following it, we believe that one can discover interesting new structures in the theory of
curves and beyond.
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Département de Mathématiques
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