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Special cases of main theorems. In this talk, we will consider convolution sums of
divisor functions. And instead of diving in and giving explicit statements of theorems,
I will start by giving you special examples of what we will be able to prove.

We denote σa(n) =
∑

d|n,d>0 d
a. For examples, σ0(−2) = 10 + 20 = 2.

• Example 1. For n ∈ N, and φ1(n1, n2) = 2− n2−n1
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• Example 2. (conjectured in [1])
For n ∈ N and

φ2(n1, n2) = −1
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we have∑

n1,n2∈Z\{0}
n1+n2=n

φ2(n1, n2)σ2(n1)σ2(n2) =

(
ζ(2)n2

2
+ 30ζ ′(−2)

)
σ2(n),

where ζ denotes the Riemann zeta function.
• Example 3. For n ∈ N and

φ3(n1, n2) = (n1 − 3n2)|n1|
1
2 + (n2 − 3n1)|n2|

1
2 ,

we have∑
n1∈Z\{0,n}
n1+n2=n

φ3(n1, n2)σ− 1
2
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2
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2
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2
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2
)
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.

Note:

(1) there are infinitely many summands in each sum,
(2) all sums considered are absolutely convergent; it is not a meromorphic continu-

ation,
1
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(3) we took n > 0 for the convenience; the case n < 0 follows immediately, and the
case n = 0 is completely described by the Ramanujan formula∑

n1∈N

σr1(n1)σr2(n1)

ns
1

=
ζ(s)ζ(s− r1)ζ(s− r2)ζ(s− (r1 + r2))

ζ(2s− (r1 + r2))
.

Related results.

• finite sums, odd divisor functions, M ∈ N.
– 1804-1851 attributed to Jacobi,∑

1≤n1≤n−1

n1+n2=n

σ3(n1)σ3(n2) =
σ7(n)− σ3(n)

120
.

– [2] introduced method of calculations of∑
1≤n1≤n−1

n1+n2=n

σr1(n1)σr2(n2)n
j
1, j ∈ N0, r1, r2 ∈ 2N0 + 1

• [9] showed for any C∞-function with compact support,∑
1≤m1≤∞,m1+m2=m

σ0(m1)σ0(m2)W

(
m1

m1 +m2

)
is explicitly given; involves Maass wave forms and integration against Riemann
zeta function. Despite that it is given by an infinite sum, the sum is, in fact,
finite.

• [8] informal proof of Example 2. Involves non-justifiable interchanging of limits.
• [5] generalization of [8].

2. Motivation

Let f : H → C be a function satisfying the equation

(∆− 12)f(z) = −E2
3/2(z), z ∈ H, ∆ = y2(d2/dx2 + d2/dy2).

Using separation of variables, we obtain that n-th Fourier term of f for n ̸= 0 satisfies
a certain ODE that I will not write and thus belongs to a 2-dimensional space1

f̂n ∈
{
αn

√
yK1/2(|n|y) + βn

√
yI1/2(|n|y)

+
∑

n1,n2∈Z\{0}
n1+n2=n

1∑
i,j=0

2r−1∑
k=0

qi,j,k(n1, n2, y)y
1−kKi(|n1|y)Kj(|n2|y) |αn, βn ∈ C

,

(2.1)

where qi,j,k is some function in n1 and n2.
If we demand that the function grows not too fast in cusps, then βn = 0.

1The equation below is slightly lying: there are summands missing corresponding to the cases
n1 = n, n2 = 0 and n1 = 0, n2 = n.
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• There exists an algorithm to calculate qi,j,k for Fourier coefficients of

(∆− r(r + 1))f(z) = Ea+1/2(z)Eb+1/2(z)

for physically relevant r, a, b ∈ N0 [4] and [3].

Naively interchanging finding asymptotic expansion and an infinite sum and assuming
Example 2 holds, every function from the space has asymptotic expansion

f̂n(z) = αny
−3 + ..., y → 0.

On the other hand, physical condition, the weak coupling limit

f(z) = O(y3), y → ∞.

From automorphy2, αn = 0.

3. Main theorem (case of even divisors)

Let Q
(α,β)
d (x) be the Jacobi function of the second kind defined as follows:

Q
(α,β)
d (x) =

(x− 1)−α(x+ 1)−β

2d+1

∫ 1

−1

(1− t)d+α(1 + t)d+βdt

(x− t)d+1
, x ∈ C \ [−1, 1] .

Examples:

• Q
(0,0)
1 (x) = x

2
log |x+1

x−1
| − 1.

• for α, β, d ∈ Z≥0,

Q
(α,β)
d (x) =

(−1)α

2
P

(α,β)
d (x) log

∣∣∣∣x+ 1

x− 1

∣∣∣∣+ R(x)

(x− 1)α(x+ 1)β
,

and R ∈ Q[x] is a polynomial of degree d+ α + β − 1.

Lemma 3.1. [6] For any d ≥ 1, r1, r2 ∈ 2Z>0 and n ∈ N,
(3.1)∑
n1,n2∈Z\{0}
n1+n2=n

Q
(r1,r2)
d

(n2 − n1

n1 + n2

)
σr1(n1)σr2(n2) = (−1)dC

(r1,r2)
d (n)σr1(n)−C

(r2,r1)
d (n)σr2(n)+

an
nd

,

where

C
(r1,r2)
d (n) =

(r2 − 1)!(r1 + d)!

2(r1 + r2 + d)!
ζ(r2)n

r2 +

(
d+ r2

d

)
ζ ′(−r2)

2
.

where an is the n-th Fourier coefficient of a cusp form of weight

k := 2d+ r1 + r2 + 2

2By [7], if h(x + iy) is an SL(2,Z)-invariant function on the upper half plane satisfying the large-

y growth condition h(x + iy) = O(ys) for some s > 1, then each Fourier mode ĥn(y) =
∫ 1

0
h(x +

iy)e−2πinxdx of h satisfies the bound ĥn(y) = O
(
y1−s

)
for small y. In particular, the small-y boundary

condition for any mode number n is

f̂n(y) = O
(
y−2

)
.
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on SL2(Z), given by h =
∑

f λff , where f runs over normalized Hecke eigenforms3 of
weight k and level 1, and

λf =
π(−1)d+r2/2+1

2k

(
k − 2

d

)
L⋆(f, d+ 1)L⋆(f, r1 + d+ 1)

⟨f, f⟩
.

Above L⋆(f, ·) is the completed L-function of f :

L⋆(f, s) = (2π)−sΓ(s)L(f, s).

Remarks to the lemma:

• in Examples 1 and 2, the cusp forms are of weights less than 8.
• r1, r2 ∈ Z0 is also allowed, but formulas become longer,
• informal proof introduced by Miller, Radchenko, Klinder-Logan in [8] and ex-
tended by F., Klinder-Logan in [5] allows to calculate the first two terms of the
sum

• the formula in the lemma allows to calculate any convergent expression of the
form ∑

φ(n1, n2)σr1(n1)σr2(n2)

for any

φ(n1, n2) :=
d−1∑

j=−r1

Ajn
j
1 +

d−1∑
j=−r2

Bjn
j
2 +

d∑
j=0

(
Cjn

j
1 log |n1|+Djn

j
2 log |n2|

)
(3.2)

• L-values are evaluated at their critical points,
• a certain combination of generalized Eisenstein series has no cuspidal compo-
nents; regularized large N expansion of certain integrated correlators in SU(N)
N = 4 SYM theory.

Sketch of the proof of the main theorem

The main idea to use generating functions. Proving this equality is to consider it to
be the n-th Fourier coefficient of a certain cusp form. More precisely, we would like to
find some Φ of weight k, and then write

Φ(τ) =
∞∑
n=1

anq
n =

∑
f is a Hecke eigenform of weight k

⟨f,Φ⟩
⟨f, f⟩

f.

Then our convolution identity should read ”n-th Fourier coefficient of l.h.s. is the n-th
Fourier coefficient of a r.h.s.”.

We will obtain Φ from a so-called holomorphic projection4 of a certain automorphic
function. The next lemma is about that one can project any automorphic form to a
cusp form; and then relate their Fourier coefficients.

3We say that a Hecke eigenform is normalized if its first non-zero Fourier coefficient is equal to 1.
4

Lemma 3.2 (Holomorphic projection lemma). Let Φ̃ be a non-holomorphic modular form of weight

k > 2 for SL2(Z) with a Fourier expansion Φ̃(z) =
∑

m∈Z am(y)e2πimx, and suppose that for some
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We take non-holomorphic Eisenstein series of weight 2q and spectral parameter s:

y−qE∗
2q(τ, s) = θq(s)

∑
γ∈Γ\Γ∞

ℑ(γ.z)s−q/2

(cτ + d)q
,

where θq(s) = π−sΓ(s+ q)ζ(2s). It is automorphic with weight 2q. Moreover, it has the
Fourier expansion

E∗
2q(τ, s) = θq(s)y

s + θq(1− s)y1−s + (−1)q
∑
n̸=0

σ2s−1(n)

|n|s
Wq,s−1/2(4πny)e

2πinx ,

where Wq,s−1/2 is the Whittaker function. Further we take

Φ̃(τ) = E∗
2k1

(τ,m1 + 1/2)E∗
2k2

(τ,m2 + 1/2)y−k1−k2 ,

where we choose the integers k1 and k2 to satisfy 2k1 + 2k2 = k = r1 + r2 + 2d+ 2 and
ki ≥ mi. It satisfies the properties of holomorphic projection lemma. The n-th Fourier

coefficient of Φ̃(τ) can be calculated as

an(y) =
∑

n1+n2=n

an1,n2(y)

where

an1,n2(y) =
(−1)k1+k2σr1(n1)σr2(n2)

|n1|r1/2+1/2|n2|r2/2+1/2
Wk1,m1(4πn1y)Wk2,m2(4πn2y)y

k1+k2−2.

Now, we want to use the holomorphic projection lemma for Φ̃. We find that

Φ =
∞∑
n=1

anq
n =

∞∑
n=1

∑
n1+n2=n

an1,n2q
n,

and, up to a constant (we use the formula in the holomorphic projection lemma and
calculate all the integrals),

an1,n2 = σr1(n1)σr2(n2)Q
(r1,r2)
d (n2−n1

n2+n1
),

and
an,0 = (−1)dC

(r1,r2)
d (n)σr1(n), a0,n = C

(r2,r1)
d (n)σr2(n).

Thankfully, Diamantis and O’Sullivan already calculated the Petersson inner product:

⟨f,Φ⟩ HP
= ⟨f, Φ̃⟩ = 2(−1)k2πkL∗(f, d+ 1)L∗(f, r2 + d+ 1),

that finishes the proof.

ε > 0 we have Φ̃(z) = O(y−ε) as z → i∞. Define

am =
(4πm)k−1

(k − 2)!

∫ ∞

0

am(y)e−2πmyyk−2dy, m > 0.

Then the function Φ(z) =
∑

m>0 ame2πimz is a holomorphic cusp form of weight k for SL2(Z) and

moreover ⟨f,Φ⟩ = ⟨f, Φ̃⟩ for all f ∈ Sk(SL2(Z)). □
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