CONVOLUTION IDENTITIES FOR DIVISOR FUNCTIONS TALK LILLE MAY 2025

KSENIA FEDOSOVA (BASED ON WORK WITH KIM KLINGER-LOGAN, AND DANYLO RADCHENKO)

Special cases of main theorems. In this talk, we will consider convolution sums of divisor functions. And instead of diving in and giving explicit statements of theorems, I will start by giving you special examples of what we will be able to prove.

We denote $\sigma_a(n) = \sum_{d|n,d>0} d^a$. For examples, $\sigma_0(-2) = 1^0 + 2^0 = 2$.

• Example 1. For $n \in \mathbb{N}$, and $\varphi_1(n_1, n_2) = 2 - \frac{n_2 - n_1}{n_2 + n_1} \log \left| \frac{n_2}{n_1} \right|$, we have

$$\sum_{\substack{n_1, n_2 \in \mathbb{Z} \setminus \{0\} \\ n_1 + n_2 = n}} \varphi_1(n_1, n_2) \sigma_0(n_1) \sigma_0(n_2) = \left(2 - \log(4\pi^2 |n|)\right) \sigma_0(n),$$

• Example 2. (conjectured in [1])

For $n \in \mathbb{N}$ and

$$\varphi_2(n_1, n_2) = -\frac{1}{4} \left(\frac{n_1^2}{n_2^2} + \frac{n_2^2}{n_1^2} \right) - \frac{7}{2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} \right) + \frac{47}{2} + 15 \left(\frac{n_2 - n_1}{n_1 + n_2} \right) \log \left| \frac{n_1}{n_2} \right|,$$

we have

$$\sum_{\substack{n_1, n_2 \in \mathbb{Z} \setminus \{0\} \\ n_1 + n_2 = n}} \varphi_2(n_1, n_2) \sigma_2(n_1) \sigma_2(n_2) = \left(\frac{\zeta(2)n^2}{2} + 30\zeta'(-2)\right) \sigma_2(n),$$

where ζ denotes the Riemann zeta function.

• Example 3. For $n \in \mathbb{N}$ and

$$\varphi_3(n_1, n_2) = (n_1 - 3n_2)|n_1|^{\frac{1}{2}} + (n_2 - 3n_1)|n_2|^{\frac{1}{2}},$$

we have

$$\sum_{\substack{n_1 \in \mathbb{Z} \setminus \{0, n\} \\ n_1 + n_2 = n}} \varphi_3(n_1, n_2) \sigma_{-\frac{1}{2}}(n_1) \sigma_{-\frac{1}{2}}(n_2) = -\sigma_{-\frac{1}{2}}(n) \left(2n^{\frac{3}{2}} \zeta(\frac{1}{2}) + \frac{3}{2\pi} n \zeta(\frac{3}{2}) \right).$$

Note:

- (1) there are infinitely many summands in each sum,
- (2) all sums considered are absolutely convergent; it is not a meromorphic continuation.

(3) we took n > 0 for the convenience; the case n < 0 follows immediately, and the case n = 0 is completely described by the Ramanujan formula

$$\sum_{n_1 \in \mathbb{N}} \frac{\sigma_{r_1}(n_1)\sigma_{r_2}(n_1)}{n_1^s} = \frac{\zeta(s)\zeta(s-r_1)\zeta(s-r_2)\zeta(s-(r_1+r_2))}{\zeta(2s-(r_1+r_2))}.$$

Related results.

- finite sums, odd divisor functions, $M \in \mathbb{N}$.
 - 1804-1851 attributed to Jacobi,

$$\sum_{\substack{1 \le n_1 \le n-1 \\ n_1 + n_2 = n}} \sigma_3(n_1)\sigma_3(n_2) = \frac{\sigma_7(n) - \sigma_3(n)}{120}.$$

- [2] introduced method of calculations of

$$\sum_{\substack{1 \le n_1 \le n-1 \\ n_1 + n_0 = n}} \sigma_{r_1}(n_1) \sigma_{r_2}(n_2) n_1^j, \quad j \in \mathbb{N}_0, r_1, r_2 \in 2\mathbb{N}_0 + 1$$

• [9] showed for any C^{∞} -function with compact support,

$$\sum_{1 \le m_1 \le \infty, m_1 + m_2 = m} \sigma_0(m_1) \sigma_0(m_2) W\left(\frac{m_1}{m_1 + m_2}\right)$$

is explicitly given; involves Maass wave forms and integration against Riemann zeta function. Despite that it is given by an infinite sum, the sum is, in fact, finite.

- [8] informal proof of Example 2. Involves non-justifiable interchanging of limits.
- [5] generalization of [8].

2. MOTIVATION

Let $f: \mathbb{H} \to \mathbb{C}$ be a function satisfying the equation

$$(\Delta - 12)f(z) = -E_{3/2}^2(z), \quad z \in \mathbb{H}, \quad \Delta = y^2(d^2/dx^2 + d^2/dy^2).$$

Using separation of variables, we obtain that n-th Fourier term of f for $n \neq 0$ satisfies a certain ODE that I will not write and thus belongs to a 2-dimensional space¹

$$\hat{f}_n \in \left\{ \alpha_n \sqrt{y} K_{1/2}(|n|y) + \beta_n \sqrt{y} I_{1/2}(|n|y) \right\}$$

$$+ \sum_{\substack{n_1, n_2 \in \mathbb{Z} \setminus \{0\} \\ n_1 + n_2 = n}} \sum_{i,j=0}^{1} \sum_{k=0}^{2r-1} q_{i,j,k}(n_1, n_2, y) y^{1-k} K_i(|n_1|y) K_j(|n_2|y) | \alpha_n, \beta_n \in \mathbb{C} \right\},$$

where $q_{i,j,k}$ is some function in n_1 and n_2 .

If we demand that the function grows not too fast in cusps, then $\beta_n = 0$.

¹The equation below is slightly lying: there are summands missing corresponding to the cases $n_1 = n, n_2 = 0$ and $n_1 = 0, n_2 = n$.

• There exists an algorithm to calculate $q_{i,j,k}$ for Fourier coefficients of

$$(\Delta - r(r+1))f(z) = E_{a+1/2}(z)E_{b+1/2}(z)$$

for physically relevant $r, a, b \in \mathbb{N}_0$ [4] and [3].

Naively interchanging finding asymptotic expansion and an infinite sum and assuming Example 2 holds, every function from the space has asymptotic expansion

$$\hat{f}_n(z) = \alpha_n y^{-3} + ..., \quad y \to 0.$$

On the other hand, physical condition, the weak coupling limit

$$f(z) = O(y^3), \quad y \to \infty.$$

From automorphy², $\alpha_n = 0$.

3. Main theorem (case of even divisors)

Let $Q_d^{(\alpha,\beta)}(x)$ be the Jacobi function of the second kind defined as follows:

$$Q_d^{(\alpha,\beta)}(x) = \frac{(x-1)^{-\alpha}(x+1)^{-\beta}}{2^{d+1}} \int_{-1}^1 \frac{(1-t)^{d+\alpha}(1+t)^{d+\beta}dt}{(x-t)^{d+1}}, \qquad x \in \mathbb{C} \setminus [-1,1].$$

Examples:

- $Q_1^{(0,0)}(x) = \frac{x}{2} \log |\frac{x+1}{x-1}| 1.$ for $\alpha, \beta, d \in \mathbb{Z}_{>0}$,

$$Q_d^{(\alpha,\beta)}(x) = \frac{(-1)^{\alpha}}{2} P_d^{(\alpha,\beta)}(x) \log \left| \frac{x+1}{x-1} \right| + \frac{R(x)}{(x-1)^{\alpha}(x+1)^{\beta}},$$

and $R \in \mathbb{Q}[x]$ is a polynomial of degree $d + \alpha + \beta - 1$.

Lemma 3.1. [6] For any $d \ge 1$, $r_1, r_2 \in 2\mathbb{Z}_{>0}$ and $n \in \mathbb{N}$,

$$\sum_{\substack{n_1, n_2 \in \mathbb{Z} \setminus \{0\}\\ n_1 + n_2 = n}} Q_d^{(r_1, r_2)} \left(\frac{n_2 - n_1}{n_1 + n_2}\right) \sigma_{r_1}(n_1) \sigma_{r_2}(n_2) = (-1)^d C_d^{(r_1, r_2)}(n) \sigma_{r_1}(n) - C_d^{(r_2, r_1)}(n) \sigma_{r_2}(n) + \frac{a_n}{n^d},$$

where

$$C_d^{(r_1,r_2)}(n) = \frac{(r_2-1)!(r_1+d)!}{2(r_1+r_2+d)!}\zeta(r_2)n^{r_2} + \binom{d+r_2}{d}\frac{\zeta'(-r_2)}{2}.$$

where a_n is the n-th Fourier coefficient of a cusp form of weight

$$k := 2d + r_1 + r_2 + 2$$

$$\widehat{f}_n(y) = O(y^{-2}).$$

²By [7], if h(x+iy) is an $SL(2,\mathbb{Z})$ -invariant function on the upper half plane satisfying the largey growth condition $h(x+iy) = O(y^s)$ for some s>1, then each Fourier mode $\widehat{h}_n(y) = \int_0^1 h(x+iy) dx$ iy) $e^{-2\pi inx}dx$ of h satisfies the bound $\hat{h}_n(y) = O(y^{1-s})$ for small y. In particular, the small-y boundary condition for any mode number n is

on $SL_2(\mathbb{Z})$, given by $h = \sum_f \lambda_f f$, where f runs over normalized Hecke eigenforms³ of weight k and level 1, and

$$\lambda_f = \frac{\pi (-1)^{d+r_2/2+1}}{2^k} \binom{k-2}{d} \frac{L^{\star}(f,d+1)L^{\star}(f,r_1+d+1)}{\langle f,f \rangle} \, .$$

Above $L^*(f,\cdot)$ is the completed L-function of f:

$$L^{\star}(f,s) = (2\pi)^{-s} \Gamma(s) L(f,s).$$

Remarks to the lemma:

- in Examples 1 and 2, the cusp forms are of weights less than 8.
- $r_1, r_2 \in \mathbb{Z}_0$ is also allowed, but formulas become longer,
- informal proof introduced by Miller, Radchenko, Klinder-Logan in [8] and extended by F., Klinder-Logan in [5] allows to calculate the first two terms of the sum
- the formula in the lemma allows to calculate any convergent expression of the form

$$\sum \varphi(n_1, n_2) \sigma_{r_1}(n_1) \sigma_{r_2}(n_2)$$

for any

(3.2)
$$\varphi(n_1, n_2) := \sum_{j=-r_1}^{d-1} A_j n_1^j + \sum_{j=-r_2}^{d-1} B_j n_2^j + \sum_{j=0}^{d} (C_j n_1^j \log |n_1| + D_j n_2^j \log |n_2|)$$

- L-values are evaluated at their critical points,
- a certain combination of generalized Eisenstein series has no cuspidal components; regularized large N expansion of certain integrated correlators in SU(N) $\mathcal{N}=4$ SYM theory.

SKETCH OF THE PROOF OF THE MAIN THEOREM

The main idea to use generating functions. Proving this equality is to consider it to be the n-th Fourier coefficient of a certain cusp form. More precisely, we would like to find some Φ of weight k, and then write

$$\Phi(\tau) = \sum_{n=1}^{\infty} a_n q^n = \sum_{f \text{ is a Hecke eigenform of weight } k} \frac{\langle f, \Phi \rangle}{\langle f, f \rangle} f.$$

Then our convolution identity should read "n-th Fourier coefficient of l.h.s. is the n-th Fourier coefficient of a r.h.s.".

We will obtain Φ from a so-called *holomorphic projection*⁴ of a certain automorphic function. The next lemma is about that one can project any automorphic form to a cusp form; and then relate their Fourier coefficients.

Lemma 3.2 (Holomorphic projection lemma). Let $\widetilde{\Phi}$ be a non-holomorphic modular form of weight k > 2 for $\mathrm{SL}_2(\mathbb{Z})$ with a Fourier expansion $\widetilde{\Phi}(z) = \sum_{m \in \mathbb{Z}} a_m(y) e^{2\pi i m x}$, and suppose that for some

 $^{^3}$ We say that a Hecke eigenform is normalized if its first non-zero Fourier coefficient is equal to 1.

We take non-holomorphic Eisenstein series of weight 2q and spectral parameter s:

$$y^{-q} E_{2q}^*(\tau, s) = \theta_q(s) \sum_{\gamma \in \Gamma \backslash \Gamma_{\infty}} \frac{\Im(\gamma . z)^{s - q/2}}{(c\tau + d)^q},$$

where $\theta_q(s) = \pi^{-s}\Gamma(s+q)\zeta(2s)$. It is automorphic with weight 2q. Moreover, it has the Fourier expansion

$$E_{2q}^*(\tau,s) = \theta_q(s)y^s + \theta_q(1-s)y^{1-s} + (-1)^q \sum_{n \neq 0} \frac{\sigma_{2s-1}(n)}{|n|^s} W_{q,s-1/2}(4\pi ny)e^{2\pi i nx},$$

where $W_{q,s-1/2}$ is the Whittaker function. Further we take

$$\widetilde{\Phi}(\tau) = E_{2k_1}^*(\tau, m_1 + 1/2) E_{2k_2}^*(\tau, m_2 + 1/2) y^{-k_1 - k_2},$$

where we choose the integers k_1 and k_2 to satisfy $2k_1 + 2k_2 = k = r_1 + r_2 + 2d + 2$ and $k_i \ge m_i$. It satisfies the properties of holomorphic projection lemma. The *n*-th Fourier coefficient of $\widetilde{\Phi}(\tau)$ can be calculated as

$$a_n(y) = \sum_{n_1+n_2=n} a_{n_1,n_2}(y)$$

where

$$a_{n_1,n_2}(y) = \frac{(-1)^{k_1+k_2}\sigma_{r_1}(n_1)\sigma_{r_2}(n_2)}{|n_1|^{r_1/2+1/2}|n_2|^{r_2/2+1/2}} W_{k_1,m_1}(4\pi n_1 y) W_{k_2,m_2}(4\pi n_2 y) y^{k_1+k_2-2}.$$

Now, we want to use the holomorphic projection lemma for $\tilde{\Phi}$. We find that

$$\Phi = \sum_{n=1}^{\infty} a_n q^n = \sum_{n=1}^{\infty} \sum_{n_1 + n_2 = n} a_{n_1, n_2} q^n,$$

and, up to a constant (we use the formula in the holomorphic projection lemma and calculate all the integrals),

$$a_{n_1,n_2} = \sigma_{r_1}(n_1)\sigma_{r_2}(n_2)Q_d^{(r_1,r_2)}(\frac{n_2-n_1}{n_2+n_1}),$$

and

$$a_{n,0} = (-1)^d C_d^{(r_1,r_2)}(n) \sigma_{r_1}(n), \quad a_{0,n} = C_d^{(r_2,r_1)}(n) \sigma_{r_2}(n).$$

Thankfully, Diamantis and O'Sullivan already calculated the Petersson inner product:

$$\langle f, \Phi \rangle \stackrel{\text{HP}}{=} \langle f, \widetilde{\Phi} \rangle = 2(-1)^{k_2} \pi^k L^*(f, d+1) L^*(f, r_2 + d + 1),$$

that finishes the proof.

 $\varepsilon > 0$ we have $\widetilde{\Phi}(z) = O(y^{-\varepsilon})$ as $z \to i\infty$. Define

$$a_m = \frac{(4\pi m)^{k-1}}{(k-2)!} \int_0^\infty a_m(y) e^{-2\pi my} y^{k-2} dy, \quad m > 0.$$

Then the function $\Phi(z) = \sum_{m>0} a_m e^{2\pi i m z}$ is a holomorphic cusp form of weight k for $\mathrm{SL}_2(\mathbb{Z})$ and moreover $\langle f, \Phi \rangle = \langle f, \widetilde{\Phi} \rangle$ for all $f \in S_k(\mathrm{SL}_2(\mathbb{Z}))$.

References

- [1] S. M. Chester, M. B. Green, S. S. Pufu, Y. Wang, and C. Wen, New modular invariants in $\mathcal{N}=4$ super-Yang-Mills theory, J. High Energy Phys. (2021), no. 4, Paper No. 212, 56.
- [2] Nikolaos Diamantis and Cormac O'Sullivan, Kernels of L-functions of cusp forms, Mathematische Annalen **346** (2010), 897–929.
- [3] Ksenia Fedosova, Whittaker-fourier-series-in-n-4-super-yang-mills-theory, https://github.com/ksnfdsv/Whittaker-Fourier-series-in-N-4-Super-Yang-Mills-Theory, 2022, Accessed: 2025-05-29.
- [4] Ksenia Fedosova and Kim Klinger-Logan, Whittaker fourier type solutions to differential equations arising from string theory, arXiv preprint arXiv:2209.09319 (2022).
- [5] _____, Shifted convolution sums motivated by string theory, Journal of Number Theory **260** (2024), 151–172.
- [6] Ksenia Fedosova, Kim Klinger-Logan, and Danylo Radchenko, Convolution identities for divisor sums and modular forms, Proceedings of the National Academy of Sciences 121 (2024), no. 44, e2322320121.
- [7] Michael B Green, Stephen D Miller, and Pierre Vanhove, SL(2,Z)-invariance and d-instanton contributions to the D6R4 interaction, arXiv preprint arXiv:1404.2192 (2014).
- [8] Kim Klinger-Logan, Stephen D Miller, and Danylo Radchenko, *The D6R4 interaction as a Poincare series, and a related shifted convolution sum*, arXiv preprint arXiv:2210.00047 (2022).
- [9] Yoichi Motohashi, *The binary additive divisor problem*, Annales scientifiques de l'Ecole normale supérieure, vol. 27, 1994, pp. 529–572.