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Special cases of main theorems. In this talk, we will consider convolution sums of
divisor functions. And instead of diving in and giving explicit statements of theorems,
I will start by giving you special examples of what we will be able to prove.

We denote 04(n) = >4, 450" For examples, og(—2) = 1° +2° = 2.

e Example 1. For n € N, and ¢;(ny,ny) =2 — P

Z 1(n1,n2)a0(n1)oo(ng) = (2 — log(4n?|n|))oo(n),

ny,mo€Z\{0}
ni+n2=n

e Example 2. (conjectured in [1])
For n € N and

1n? ni 7m n 47 5 — N
1M LM ( 1) log

7 _ - — +15
p2(n1,m2) = 4(n2 n%) 2(n2 n1)+ 2 + n1 + Na

we have

Z ©a(n1,n2)02(N1)02(n2) = (C(22)n +3OCI(—2)>U2(”)7

n1,n2€Z\{0}
ni+ns=n

where ¢ denotes the Riemann zeta function.
e Example 3. For n € N and

@3(n1,n2) = (n1 — 3ny)|n1|2 + (ny — 3ny)|nal?,

we have

301 3 3
S valnmoymoy(m) = oy (200(3) + nc(d)).

n1 €Z\{0,n}
ni+ns=n

Note:

(1) there are infinitely many summands in each sum,
(2) all sums considered are absolutely convergent; it is not a meromorphic continu-

ation,
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(3) we took n > 0 for the convenience; the case n < 0 follows immediately, and the
case n = 0 is completely described by the Ramanujan formula

Z 0, (N1)0r, (N1) o C(s)¢(s —r1)¢(s —ra)C(s — (11 + 7’2)).

nieN m C(2s = (1 +12))

Related results.

e finite sums, odd divisor functions, M € N.
— 1804-1851 attributed to Jacobi,

o7\n) —oz(n
Z o3(n1)os(ng) = %03()
I

— [2] introduced method of calculations of

Z Ory (nl)o-’r‘g (77/2)”{; ] € N(),T'l, o € 2N0 +1

1<nij<n-1
ni+n2=n

e [9] showed for any C°°-function with compact support,

3 00<m1)00<m2>W(ﬁ)

1<m; <oco,mi+ma=m

is explicitly given; involves Maass wave forms and integration against Riemann
zeta function. Despite that it is given by an infinite sum, the sum is, in fact,
finite.
e [8] informal proof of Example 2. Involves non-justifiable interchanging of limits.
e [5] generalization of [8].

2. MOTIVATION

Let f : H — C be a function satisfying the equation
(A—12)f(2) = —E3;5(2), zeH, A=y?(d*/de®+d*/dy?).
Using separation of variables, we obtain that n-th Fourier term of f for n # 0 satisfies
a certain ODE that I will not write and thus belongs to a 2-dimensional space’
(2.1)
fu € {anv/yE p2(Inly) + Buv/y L 2(Inly)

2r—1

1
+ Y Y agk(na, e, vy K (Inaly) K (In2ly) [ am, B € C o,

n1,n2€Z\{0} ¢,j=0 k=0
ni1+n2=n

where ¢; j; is some function in n; and ns.
If we demand that the function grows not too fast in cusps, then 3, = 0.

IThe equation below is slightly lying: there are summands missing corresponding to the cases
ny =n,ny =0 and n; = 0,n9 = n.
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e There exists an algorithm to calculate ¢; ;  for Fourier coefficients of

(A =r(r+1))f(2) = Ear1/2(2) Epra/2(2)

for physically relevant r,a,b € Ny [4] and [3].
Naively interchanging finding asymptotic expansion and an infinite sum and assuming
Example 2 holds, every function from the space has asymptotic expansion

fn(z) =a,y 2 +..., y—0.
On the other hand, physical condition, the weak coupling limit
f(z) =0(), y— o0

From automorphy?, a,, = 0.

3. MAIN THEOREM (CASE OF EVEN DIVISORS)

Let Q(a"@ (x) be the Jacobi function of the second kind defined as follows:

a, (x — 1)~z + 1)—5 1 (1- t)d+a(1 + t>d+6dt
Q& B) (z) = 9d+1 /1 (z — t)dH )

Examples:

o Q1""(z) = $log| 2| — 1.
o for a, 3,d € Z>y,

xreC\[-1,1].

(a,8) (=1 J(.8) r+1 R(x
= p 1

and R € Q[z] is a polynomial of degree d + a + 5 — 1.

Lemma 3.1. [6] For any d > 1, ri,r3 € 27~ and n € N,
(3.1)
(r1,r2 _ d ~(r1,m2) (r2,m1) an
> QT () o (o (na) = (SO ) () =Cf ™ () (m) G

nl,nQEZ\{O}
ni+n2=n

where

(rra), (12 = Dy + d)! (A T2\ (=72)
Cd (n>— 2(7’1+T2+d). C(T2)n +< d ) 2 '

where a,, is the n-th Fourier coefficient of a cusp form of weight

k:=2d+7r +ry+2

2By [7], if h(x + iy) is an SL(2,Z)-invariant function on the upper half plane satlsfylng the large-
y growth condition h(z + iy) = O(y®) for some s > 1, then each Fourier mode h fo

iy)e 2™ dy of h satisfies the bound ﬁn( )= O(y ) for small y. In particular, the Small -y boundary
condition for any mode number n is

Faly) = O(y72).
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on Sle(Z), given by h = Zf Aif, where f runs over normalized Hecke eigenforms® of
weight k and level 1, and

N s (k - 2) L(f,d+ )EA(fm +d+ 1)
! 2 d (F.0)
Above L*(f,-) is the completed L-function of f:

L*(f,s) = (2m)°T(s) L(f, 5)-

Remarks to the lemma:

e in Examples 1 and 2, the cusp forms are of weights less than 8.

e 1,15 € Zyg is also allowed, but formulas become longer,

e informal proof introduced by Miller, Radchenko, Klinder-Logan in [8] and ex-
tended by F., Klinder-Logan in [5] allows to calculate the first two terms of the
sum

e the formula in the lemma allows to calculate any convergent expression of the

form
Z (11, n2)0r, (n1)0r, (112)

for any

d—1 d—1 d
(3.2) o(ny, ng) = Z Al + Z B} + Z(C’jn{ log [n1| + D;n3 log |na|)
Jj=-r Jj==r2 J=0
e [-values are evaluated at their critical points,
e a certain combination of generalized Eisenstein series has no cuspidal compo-

nents; regularized large N expansion of certain integrated correlators in SU(N)
N =4 SYM theory.

SKETCH OF THE PROOF OF THE MAIN THEOREM

The main idea to use generating functions. Proving this equality is to consider it to
be the n-th Fourier coefficient of a certain cusp form. More precisely, we would like to
find some ® of weight k, and then write

o
O(7) = Zanq" = Z —<<‘;’ ?; .
n=1 f is a Hecke eigenform of weight k !
Then our convolution identity should read ”n-th Fourier coefficient of 1.h.s. is the n-th
Fourier coefficient of a r.h.s.”.

We will obtain ® from a so-called holomorphic projection* of a certain automorphic
function. The next lemma is about that one can project any automorphic form to a
cusp form; and then relate their Fourier coefficients.

3We say that a Hecke eigenform is normalized if its first non-zero Fourier coefficient is equal to 1.
4

Lemma 3.2 (Holomorphic projection lemma). Let d be a non-holomorphic modular form of weight
k > 2 for SLy(Z) with a Fourier expansion ®(z) = >, oy am(y)e*™™*, and suppose that for some



CONVOLUTION IDENTITIES FOR DIVISOR FUNCTIONS TALK LILLE MAY 2025 5

We take non-holomorphic Eisenstein series of weight 2¢q and spectral parameter s:

P J(y.2)59/2
y 1By, (1, 5) = 04(s) Z ﬁ
YET\TI'oo

9

where 0,(s) = 7 *I'(s 4+ ¢)((2s). It is automorphic with weight 2¢q. Moreover, it has the
Fourier expansion

By, (r,8) = 0y(s)y" + 6,1 — )y~ + (~1)1 Y
n#0

where W, ,_1/2 is the Whittaker function. Further we take
&/)(T) = ;kl (7-7 my + 1/2) ;kg (7_7 mo + 1/2)y_k1—k?2’

where we choose the integers ki and ko to satisfy 2k; + 2ks = k =1r1 +r9 + 2d + 2 and
ki > m;. It satisfies the properties of holomorphic projection lemma. The n-th Fourier
coefficient of ®(7) can be calculated as

an(y) = Z Ay iy (Y)

ni1+ngs=n

025—1(71)
n|®

2minx

Was—1/2(4mny)e :

where

(=D 20, (n1)oy, (n2)

o (V) = (100 [P /212 [y 2 24 172 Wiy (47019) Wiy s (47029 )y ™17 72,

Now, we want to use the holomorphic projection lemma for ®. We find that

b = Zanq" = Z Z Uny s
n=1

n=1ni+ns=n

and, up to a constant (we use the formula in the holomorphic projection lemma and
calculate all the integrals),

Uy = O (1) 0y (1) QY7 (1211,

and
no = (=1)2CT ™ (n)o,, (n),  agn = CV>™ (n)oy,(n).
Thankfully, Diamantis and O’Sullivan already calculated the Petersson inner product:
(£, @) = (£, ®) = 2=1)"a"L*(f,d + YL (f,rs +d + 1),
that finishes the proof.

£ > 0 we have ®(z) = O(y~¢) as z — ico. Define
(4mm)F—1 /oo —2wmy, k-2

m T d , .
ool ) @ (y)e y"dy, m >0

Then the function ®(z) =Y, _ o am€>™™* is a holomorphic cusp form of weight k for SLy(Z) and
moreover (f,®) = (f,®) for all f € Sp(SLy(Z)). O

Ay —
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