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Feynman integrals are ubitquitous to many problems in physics ranging
from elementary particle physics to classical gravity computations
The generic form of a Feynman integral is

IΓ (z) =
∫
∆n

ωΓ (z, x)Ω0

with the domain of integration is the positive quadrant

∆n := {x1 ⩾ 0, . . . , xn ⩾ 0|[x1, . . . , xn] ∈ Pn−1}

Ω0 is the volume form on Pn−1

Ω0 =

n∑
i=1

(−1)i−1x idx1 ∧ · · · d̂x i · · ·∧ dxn

ωΓ (z, x) is a function associated to a graph Γ such that the integrand
is well defined in the completment of its polar locus in Pn−1
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The standard motto is Feynman integral are periods of the mixed
Hodge structure after performing the appropriate blow-ups [Bloch,

Esnault, Kreimer; Brown]

MΓ := H•(P̃n−1\Z̃Γ ; D̃n\D̃n ∩ Z̃Γ )

▶ ZΓ is the singular locus of the integrand
▶ ∆n ⊂ Dn := {x1 · · · xn = 0} is in the normal crossings divisor
▶ Iterated blowups are needed to separated ZΓ and Dn

The questions we want to answer are
▶ What kind of motives are appearing from Feynman integrals?
▶ Can we evaluate these periods integrals efficiently?
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Standard type of Feynman integrals in QFT take a form

ωΓ (z, x) :=
UΓ (x)ν−

(L+1)D
2

FΓ (x)ν−
LD
2

n∏
i=1

xνi−1
i

with ν =
∑n

i=1 νi , L ∈N, (D,ν1, . . . ,νn) ∈ Cn+1.
An homogeneous degree L + 1 in Pn−1 polynomial

FΓ (x) = UΓ (x)× L(m2; x) − VΓ (s, x)
▶ Homogeneous polynomial of degree L with ua1,...,an ∈ {0, 1}

UΓ (x) =
∑

a1+···+an=L

ua1,...,an

n∏
i=1

xai
i ; ai ∈ {0, 1}

▶ the mass hyperplane L(m2; x) := m2
1x1 + · · ·+ m2

nxn
▶ Homogeneous polynomial of degree L + 1

VΓ (x) =
∑

a1+···+an=L+1

sai ,...,an

n∏
i=1

xai
i ; ai ∈ {0, 1}

the coefficients sai ,...,an are linear combination of the product of
the external momenta s = {pi · pj } and relation between these
coefficients depend on the dimension D of space-time
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Laurent polynomials

In D = 2 dimensions the sunset integrand is a Laurent polynomial
C[x1, x−1

1 , . . . , xn, x−1
n ]

Ωn
⊖ =

1
ϕn
⊖(x)

n∏
i=1

dxi

xi
; ϕn

⊖(x) =

(
n∑

i=1

1
xi

)(
n∑

i=1

m2
i xi

)
− p2

The classical period is obtained by integration over the torus
Tn := {|x1| = · · · = |xn| = 1} is the generalized Apéry series

π⊖ =

∫
Tn
Ωn
⊖ =

∑
r1+···+rn=n

1
(p2)n+1

(
n!

r1! · · · rn!

)2 n∏
i=1

(m2
i )

ri

We have pencil w.r.t p2 with the singular fiber depending on the
parameters in the Laurent polynomial
New efficient algorithms allow to compute the Picard-Fuchs equation
with respect to p2 [Lairez, Vanhove; de la Cruz, Vanhove]
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The Sunset Feynman graph family

An important family of Feynman integral is the sunset graph

p p

Ω⊖n (t ,m
2) :=

Ω0

F⊖n (t ,m2; x)
∈ Hn−1(Pn−1\X⊖)

F⊖n (t ,m
2; x) := x1 · · · xn

( n∑
i=1

1
xi

) n∑
j=1

m2
j xj

− p2


▶ For n = 3 we have periods of the elliptic curve

(x1x2 + x1x3 + x2x3)(m2
1x1 + m2

2x2 + m2
3x3) = p2x1x2x3

▶ For n = 4 we have K 3 of Pic from 19 to 16 depending on values of
the parameters [Bloch, Kerr, V; Lairez, V;...]

▶ For n = 5 this is a nodal CY 3-folds (containing the Hulek-Verrill as
special case)
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Sunset graphs toric variety Xp2(An) [Verrill]

The sunset graph polynomial

F⊖n = x1 · · · xn

((
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2

)

is a character of the adjoint representation of An−1 with support on the
polytope generated by the An−1 root lattice
▶ The Newton polytope ∆n for F⊖n is reflexive with only the origin as

interior point
▶ The toric variety X (An−1) is the graph of the Cremona

transformations Xi → 1/Xi of Pn−1

X (An−1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1, 0, . . . ,0), (0, 1,0, . . . , 0), . . . ,(0, . . . ,0, 1) in Pn−1

▶ For the two-loop sunset integral we have the del Pezzo variety dP6
(blowup of 3 points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1])
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Fano Search

How many reflexive polytope are associated with Feynman integrals?

We can ask how many Fano variety can arise from Feynman integral?

When

L + 1
2

D − ν = n1, ν−
LD
2

= n2, (n1, n2) ∈N2

we define a Laurent polynomial from

Φn1,n2 =
Un1(UL− V)n2

x1 · · · xn

homogeneous of degree 0 because deg(UL− V) n2 + deg(U) n1 = n
For an allowed (n1, n2) we have the two cases
▶ internal massless case m1 = · · · = mn = 0, i.e. L = 0: Un1Vn2

x1···xn

▶ Vaccum graph sa = 0, i.e. V = 0: Un1+n2Ln2
x1···xn
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One-loop graphs

One loop graphs have n edges and their Symanzik polynomials their
graph polynomials read

U = x1 + · · ·+ xn; L = m2
1x1 + · · ·+ m2

nxn; V =
∑

1⩽i<j⩽n

vijxixj

Theorem (de la Cruz, Novichkov, V)

For all D such that (D − n, n − D/2) ∈N2 the polytope is defined by as
the convex hull of newton polygon of

ϕ1−loop =
UD−n(UL− V)n−D/2

x1 · · · xn

is reflexive when L , 0
Reflexivity can be lost when L = 0 when D , 2n
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The triangle graph : massive

We consider the case n = 3 corresponding to the triangle graph

U3 = x1 + x2 + x3,L3 = m2
1x1 + m2

2x2 + m2
3x3

V3 = v12x1x2 + v13x1x3 + v23x2x3

Both ϕa
3 =

U3
3

x1x2x3
and ϕb

3 =
U3(U3L3−V3)

x1x2x3
both lead to the same reflexive

polytopes
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The triangle graph : massive

For L3 = 0 we have ϕb
3 = (x1 + x2 + x3)

(
v12
x3

+ v13
x2

+ v23
x1

)
which leads

to a different reflexive polytope

πb
3 =

∫
T3

1

(x1 + x2 + x3)
(

v12
x3

+ v13
x2

+ v23
x1

) dx1dx2dx3

x1x2x3

is the p2 = 0 value of the sunset integral

π⊖3 (p
2) =

∫
T3

1(
1
x1

+ 1
x2

+ 1
x3

) (
m2

1x1 + m2
2x2 + m2

3x3
)
− p2

dx1dx2dx3

x1x2x3
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The pentagon graph

We consider n = 5 corresponding to the pentagon graph

U5 = x1 + · · ·+ x5, L5 = m2
1x1 + · · ·+ m2

5x5, V5 =
∑

1⩽i<j⩽5

vijxixj

We have reflexive lattice polytope

ϕa
(n,m) =

(U5L5 − V5)
nUm

3
x1 · · · x5

, (n,m) = (2,1), (1, 3), (0, 5), L5 , 0

The lattice polytope is the same as one of the quintic in P4

x5
1 + · · ·+ x5

5 − 5ψx1 · · · x5

But reflexivity is lost when L5 = 0 for

ψa
(n,m) =

V n
5 Um

3
x1 · · · x5

(n,m) = (2, 1), (1, 3)

Pierre Vanhove (IPhT) Motives for Feynman integrals 26/05/2025 12 / 37



The two-loop graphs

For two-loop Feynman graphs of (a, b, c)
vertices we consider the differential form

Ω(a,b,c);D =
U

a+b+c− 3D
2

(a,b,c)

(U(a,b,c)L(a,b,c) − V(a,b,c);D)a+b+c−DΩ0

where degU(a,b,c) = 2 and degF(a,b,c);D = 3

U(a,b,c) =

(
a∑

i=1

xi

)(
b∑

i=1

yi

)
+

(
a∑

i=1

xi

)(
c∑

i=1

zi

)
+

(
b∑

i=1

yi

)(
c∑

i=1

zi

)

L(a,b,c) =

a∑
i=1

m2
1ixi +

b∑
i=1

m2
2iyi +

c∑
i=1

m2
3izi

V(a,b,c) =

a∑
i=1

b∑
j=1

c∑
k=1

c(i , j , k)xiyjzk
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The two-loop graphs polytopes

We need to have the sum of the number of edges a + b + c = 3N, i.e.
being in P3n−1

For (a, b, c) = (1, 1, 1) this is the sunset and the toric variety dP6
The next possible case is a + b + c = 6, with
(a, b, c) = (2, 2, 2), (3, 2,1), (4,1, 1) where V(a,b,c) is a cubic and
U(a,b,c) is degree 2 in P5

graph V2
(a,b,c) (U(a,b,c)L(a,b,c) + V(a,b,c))

2 U3
(a,b,c)

(2, 2, 2) reflexive not reflexive reflexive
(3, 2, 1) reflexive not reflexive not reflexive
(4, 1, 1) not reflexive not reflexive not reflexive

We see that reflexivity become sparse and for a + b + c = 9 there is no
reflexive polytope.
After Kollár-Miyaoka-Mori we know that in any given dimension the
number of Fano varieties is finite. The search for identifying them as
Feynman integral is still on going with Leonardo de la Cruz and Pavel
Novichkov.
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Feynman Integrals are D-finite functions

Theorem[Kashiwara, Kawai; Petukhov, Smirnov; Bitoun et al.]

Feynman integrals are holonomic D-finite functions for generic
values of (D,ν1, . . . ,νn)
For a given subset of the physical parameters
z := (z1, . . . , zr ) ⊂ {s,m2} we want to derive a Gröbner basis of
minimal order differential equations

LΓ (s,m2,∂z)

∫
σ

ΩΓ = Sσ,Γ (z)

We construct differential operators Tz that annihilate the integrand in
cohomology

TzΩΓ = LΓ (s,m2,∂z)ΩΓ + dβΓ

▶ We ask that βΓ is holomorphic on Pn−1 \ ZΓ , i.e. it does not have
poles that are not present in ΩΓ

Pierre Vanhove (IPhT) Motives for Feynman integrals 26/05/2025 15 / 37



Feynman Integrals are twisted differential forms

In general dimension D = 2δ− 2ϵ with δ ∈N and ϵ ∈ R+ the
Feynman integrals are twisted differential forms

IΓ (s,m;ν,D) =

∫
∆n

ΩΓ ,

with

ΩΓ =
UΓ (x)ν−δ(L+1)

FΓ (x)ν−δL

(
UL+1
Γ (x)
FL
Γ (x)

)ϵ n∏
i=1

xνi−1
i Ω0

The twists are well defined on projective space because they are
powers of homogeneous degree 0 rational functions of (x1, . . . , xn).

For ϵ = 0 and where choosen value of δ we get the Laurent polynomial
previously discussed, but here we want to get to the general case
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In D = 2δ− 2ϵ dimensions with δ ∈N and ϵ ∈ C we have a twisted
differential form

ΩΓ =
UΓ (x)ν−δ(L+1)

FΓ (x)ν−δL

(
UL+1
Γ (x)
FL
Γ (x)

)ϵ n∏
i=1

xνi−1
i Ω0

We consider the partial derivative a = a1 + · · ·+ ar(
∂

∂z1

)a1

· · ·
(
∂

∂zr

)ar

Ωϵ
Γ =

P(a1,...,ar )(x)
Fa
Γ

Ωϵ
Γ

▶ The locus FΓ = 0 as non-isolated singularities. We need to use
syzygies of Jac(FΓ )

▶ For ϵ , 0 we have twisted differential form
We therefore adapt Griffith’s pole reduction for overcome these
difficulties.
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Extended Griffiths’ pole reduction

Reducing P(a1,...,ar )(x) in the Jacobian ideal of FΓ

P(a1,...,ar )(x) = C⃗a(x) · ∇⃗FΓ ,

We introduce the differential twisted form

β(a1,...,ar ) =
∑

1⩽i<j⩽n

xiC
j
a(x) − xjC i

a(x)
Fa−1
Γ

Ωϵ
Γ dx1∧· · ·∧d̂xi∧· · ·∧d̂xj∧· · ·∧dxn

Following Griffiths’ pole reduction we reduce the pole order of FΓ

P(a1,...,ar )(x)
Fa
Γ

ΩΓ =
∇⃗ · C⃗a(x) + λUC⃗a · ∇⃗ logUΓ

(a − 1 + λF ) F
a−1
Γ

Ωϵ
Γ +

dβ(a1,...,ar )
Γ

a − 1 + λF

where we have defined

λU = n − (L + 1)(δ− ϵ), λF = n − L(δ− ϵ).
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Extended Griffiths’ pole reduction

The term C⃗a · ∇⃗ logUΓ which has a pole in UΓ , which is reduced by
asking that

C⃗a(x) · ∇⃗UΓ = ca(x)UΓ ,

which is equivalent to the computation of syzygies of Jac(UΓ ) using
the homogeneity of UΓ(

LC⃗a(x) − ca(x)x⃗
)
· ∇⃗UΓ = 0 ,

Solving the linear system{
C⃗a(x) · ∇⃗FΓ = P(a1,...,ar )(x)
C⃗a(x) · ∇⃗UΓ = ca(x)UΓ

,

we have the pole reduction

P(a1,...,ar )(x)
Fa
Γ

ΩΓ =
∇⃗ · C⃗a(x) + λU ca(x)
(a − 1 + λF )F

a−1
Γ

Ωϵ
Γ+

a − 1
a + n − L(δ− ϵ)

dβ(a1,...,ar )
Γ
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Extended Griffiths-Dwork: syzygies

For singular hypersurface XΓ ⊂ Pn−1 the Jacobian reduction may not
be enough to reduce the pole order when k ⩾ n

For instance non-isolated singularities arise for the sunset family from
n ⩾ 4 (i.e. K 3 and higher CY), as Jacbian vanishes for n ⩾ 4 for

xi = xj = 0, m2
1x1 + · · ·+ m2

nx2
n = 0 i , j

Therefore we need to take into account the syzygies because of that.

Instead of computing the resolution separatly we do solve the linear
system from the reduction in the Jacobian of F and U.

This leads to a large linear systems that are solved using finite field
method implemented in the code FiniteFlow by [Peraro].

Pierre Vanhove (IPhT) Motives for Feynman integrals 26/05/2025 20 / 37



Differential operators I

We turn to the construction of the differential operator

Lϵ
Γ =

N(Γ ,ϵ)∑
a=0

∑
a=a1+···+ar

ai⩾0

ca1,...,ar (m⃗, s⃗, ϵ, κ)
(
∂

∂z1

)a1

· · ·
(
∂

∂zr

)ar

such that
Lϵ
ΓΩ

ϵ
Γ = dβϵ

Γ .

We start with the pole reduction with taking a first order derivative, and
increase the order until the extended Griffith’s pole reduction closes.

Holonomicity of Feynman integrals imply that the algorithm finishes
because the order N(Γ , ϵ) has for upper bound

N(Γ , ϵ) ⩽ dim(VΓ ) = (−1)n+1χ ((C∗)n\V(UΓ ) ∪V(FΓ ))

As it turns for many cases we have a strict inequality
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The sunset graph in D = 2 − 2ϵ dimensions

p p Iϵ⊖ (p
2,m2) =

∫
R3

+

(
U3
⊖

F2
⊖

)ϵ dx1dx2dx3

F⊖(x)

F⊖(x) = (x1x2 + x1x3 + x2x3)(m2
1x1 + m2

2x2 + m2
3x3) − p2x1x2x3

▶ F⊖(x) = 0 defines an elliptic curve E⊖

▶ For ϵ = 0 the integral is an elliptic dilogarithm in the regulator of a
class in the motivic cohomology of the elliptic curve E⊖ [Bloch,

Vanhove; Bloch, Kerr, Vanhove]

Pierre Vanhove (IPhT) Motives for Feynman integrals 26/05/2025 22 / 37



The two-loop sunset graph in general dimensions

Iϵ⊖ (p
2,m2) =

∫
R3

+

(
U3
⊖

F2
⊖

)ϵ dx1dx2dx3

F⊖(x)

Applying the algorithms we find a fourth order differential equation

Lϵ
⊖ = L

(1)
1 L

(2)
1 L⊖2 + ϵL

(3)
4 + ϵ2L

(4)
3 + ϵ3L

(5)
2 + ϵ4L

(6)
1 + ϵ5L

(7)
0 ,

▶ The differential equation is irreducible for generic ϵ which we
checked using the algorithms of [Chyzak, Goyer, Mezzarobba]

▶ The operators L
(a)
r are of order r

▶ The ϵ = 0 term factorizes L
(1)
1 L

(2)
1 L⊖2
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The sunset graph: Gauß-Manin connexion
If one considers a family of elliptic curve E

y2 = 4x3−g2(t)x−g3(t); j(t) =
g2(t)3

∆(t)
; δ(t) = 3g3(t)

d
dt

g2(t)−2g2(t)
d
dt

g3(t)

the periods satisfy the differential system of equations

d
dt

( ∫
γ

dx
y∫

γ
xdx
y

)
=

(
− 1

12
d
dt log∆(t)

3δ(t)
2∆(t)

−
g2(t)δ(t)

8∆(t)
1

12
d
dt log∆(t)

)( ∫
γ

dx
y∫

γ
xdx
y

)

The Picard–Fuchs operator acting on the period integral
∫
γ dx/y is

LE
2 = 144∆(t)2δ(t)

d2

dt2 + 144∆(t)
(
δ(t)

d∆(t)
dt

− ∆(t)
dδ(t)

dt

)
d
dt

+ 27g2(t)δ(t)
3 + 12

d2∆(t)
dt2 δ(t)∆(t) −

(
d∆(t)

dt

)2

δ(t) − 12
dδ(t)

dt
∆(t)

d∆(t)
dt

.
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The two-loop sunset graph in general dimensions

Iϵ⊖ (p
2,m2) =

∫
R3

+

(
U3
⊖

F2
⊖

)ϵ dx1dx2dx3

F⊖(x)

Lϵ
⊖ = L

(1)
1 L

(2)
1 L⊖2 + ϵL

(3)
4 + ϵ2L

(4)
3 + ϵ3L

(5)
2 + ϵ4L

(6)
1 + ϵ5L

(7)
0 ,

▶ The differential operator L⊖2 is the Picard-Fuchs operator for the
elliptic curve defined by

▶ The deformation ϵ affects only the apparent singularities

Lϵ
⊖

∣∣∣
( d

dt )
4 = ∆(t)2

(
−(2ϵ+ 5) t2−2

(
m2

1 + m2
2 + m2

3
)
(1 + 2ϵ) t+(7 + 6ϵ)

4∏
i=1

µi

)
where ∆(t) = t3 ∏4

i=1(t − µ
2
i ) is the discriminant of the elliptic

curve F⊖ = 0
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Apparent singularities

For a differential equation

cN(z)
dN f (z)

dzN + · · ·+ c0(z)f (z) = 0,

the roots of cN(z) are the singularities of the differential equation. A
root of cN(z) where the solution f (z) is regular is called an apparent
singularity. A root of cN(z) where the solution has a singularity is a real
singularity
For the case of Feynman integrals the non-apparent (real) singularities
are the roots of the discriminant of the singular locus of the integrand
of Feynman integrals

Theorem (de la Cruz, V)
The parameter ϵ appears only in the apparent singularities of the
differential operator Lϵ

z . This means that the ϵ deformation does not
change the position of the real singularities, but it affects the local
behaviour (the monodromy) of the solution near the singularity.
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Sunset graph Picard–Fuchs operator

Applying the algorithm to the higher dimensional family of sunset graph

p p

Ω⊖n (t ,m
2) :=

Ω0

F⊖n (t ,m2; x)
∈ Hn−1(Pn−1\X⊖)

F⊖n (t ,m
2; x) := x1 · · · xn

( n∑
i=1

1
xi

) n∑
j=1

m2
j xj

− t


For generic physical parameters we find a minimal order Picard–Fuchs
operator

Lt =

on∑
r=0

qr (t ,m2)

(
d
dt

)r

on = 2n −

(
n + 1⌊n+1

2

⌋); n ⩾ 2.

supporting that we have relative periods of a Calabi–Yau of dimension
n − 2. Which is in total agreement with Verrill toric analysis.
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Tardigrade

p1 p3

p2

p4

p5

The rational differential form in P5

Ω(2,2,2)(t) =
Ω

(6)
0(

U(2,2,2)L(2,2,2) − tV(2,2,2)
)2

U6(x) = (x1 + x2)(x3 + x4) + (x1 + x2)(x5 + x6)

+ (x3 + x4)(x5 + x6)

V6(s, x) =
∑

1⩽i,j,k⩽6 Cijkyiyjyk with linear
changes (x2i−1, x2i) → (y2i−1, y2i) and
i = 1,2, 3 Cijk symmetric traceless i.e. Ciij = 0

▶ the algorithm gives an irreducible Picard–Fuchs operator of order
11 with an head polynomial of degree up to 215

▶ Using [Eric Pichon-Pharabod] program, we have confirmed that
this is K3 an elliptically fiber K3 with singular fibres 14I1 ⊕ 2I4 ⊕ I2
of Picard number 11
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Motives for two-loop graphs [Doran, Harder, Pichon-Pharabod, V]

For two-loop Feynman graphs of (a, b, c)
vertices we consider the differential form

Ω(a,b,c);D =
U

a+b+c− 3D
2

(a,b,c)

Fa+b+c−D
(a,b,c);D

Ω0

where degU(a,b,c) = 2 and degF(a,b,c);D = 3
We determine the mixed Hodge structure

Ha+b+c−1 := Ha+b+c−1( ˜Pa+b+c−1\Z̃(a,b,c); D̃n\D̃n ∩ Z̃(a,b,c))

The method is based on quadric fibrations. The cohomology of Z(a,b,c)
is obtained by iterated extensions with Tate twists of cohomology of
hyperelliptic curves and Tate Hodge structure
We have presented some examples (a, b, c) = (1, 1,1) sunset, and
(a, b, c) = (2, 2, 2) tardigrade
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Definitions

Definition
1 Let MHSQ denote the abelian category of Q-mixed Hodge

structures.
2 The largest extension-closed subcategory of MHSQ containing the

Tate twists of H1(C;Q) for every hyperelliptic curve C is called
MHShyp

Q .
3 The largest extension-closed subcategory of MHSQ containing the

Tate twists of H1(E ;Q) for every elliptic curve E is called MHSell
Q .

We have the following results for the Hodge structure of two-loop
planar graphs

C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove,
Motivic geometry of two-loop Feynman integrals
[arXiv:2302.14840]
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Graph (a, 1, c)

Theorem

1 If 3D/2 ⩽ a + c then Ha+c ∈ MHShyp
Q .

2 Suppose a ⩽ 2 or c ⩽ 2. Then Ha+c−1(Z(a,1,c);Q) ∈ MHSell
Q .

Corollary

If 3D/2 ⩽ a + c and either a ⩽ 2 or c ⩽ 2 then Ha+c ∈ MHSell
Q .

This means that the mixed Hodge structure
Ha+c(PΓ − Z̃(a,1,c);B − (B ∩ Z̃(a,1,c))) is constructed by taking iterated
extensions of H1(E ;Q)(−a)r1 and Q(−b)r2 for different values of
a, b, r1, and r2, and with various possibly different elliptic curves.
Therefore the Feynman integrals in this cases are built from algebraic
and elliptic functions.
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Graph (3, 1, 3) double-box

Ω(3,1,3);D(t) =
U(3,1,3)(x)Ω0

(U(3,1,3)(x)L(3,1,3)(m2, x) − tV(3,1,3);D(s, x))3

Theorem
For arbitrary kinematic parameters, and arbitrary space-time
dimension D, W4H5(Z(3,1,3);Q) is mixed Tate.

1 If D ⩾ 5 then GrW
5 H5(Z(3,1,3);D;Q) � H1(C;Q)(−2) for a curve C

which has genus 2 for generic kinematic parameters.
2 If D = 4 then GrW

5 H5(Z(3,1,3);Q) � H1(E ;Q)(−2) for a curve E
which is elliptic for generic kinematic parameters.

3 If D < 4 then H5(Z(3,1,3);Q) is mixed Tate.

In D = 4 the PF operator obtained by the extended Griffith–Dwork
construction is identical to the one associated with the canonical
differential form on the elliptic curve defined from the graph polynomial
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Graph (1, 1, 2) ice-cream

p1 p3

p2

With a regular β the Picard–Fuchs operator is
of order 2 and degree 9

L2
t = q0(t) + q1(t)

d
dt

+ q2(t)
(

d
dt

)2

,

Lt is a Liouvillian differential equations with
only rational solutions

Proposition
▶ H2(Z(2,1,1)(t);Q) is generically pure Tate.
▶ Let Z = V (Disc(Z(2,1,1))(x , z, t)) ⊆ P1 ×A1 and we may define
V := π∗QZ . The local system V is isomorphic to the direct sum
U1 ⊕U2 ⊕Q2

B whereU1 is a rank 1 local system andU2 is a rank
2 local system

▶ For generic kinematic and mass parameters, Sol(L(2,1,1)) is
isomorphic to U2 � U

∨
2 .
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Graph (1, 1, 2) ice-cream : Picard–Fuchs operator

Lemma

Let L1,L2 be local systems of rank 1, and suppose that s1 and s2 are
sections of L1 ⊗ OM and L2 ⊗ OM respectively. If

Ls1 =
d
ds

− f1(s), Ls2 =
d
ds

− f2(s)

are the differential equations associated to s1 and s2 respectively, then
the differential equation associated to the section s1 ⊕ s2 of
(L1 ⊕ L2)⊗ OM is

Ls1⊕s2 = (f1(s) − f2(s))
d2

ds2 + (f2(s)2 − f1(s)2 − f ′1(s) + f ′2(s))
d
ds

+ f2(s)f ′1(s) − f1(s)f ′2(s) + f1(s)2f2(s) − f1(s)f2(s)2
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Graph (1, 1, 2) ice-cream : Picard–Fuchs operator

Proposition
After the base change

t =
(m1 − m2)

2s2 + (m1 + m2)
2

p2
2(s

2 + 1)
,

the differential operator L(2,1,1);2 is of the form given previously where
fi(s) with i = 1,2 are obtained from the application of the change of
variables T = ρi(s) with i = 1,2 to the differential operator

d
dT

−
(m2

3 + m2
4 − T )

((m3 − m4)2 − T )((m3 + m4)2 − T )
=⇒ d

ds
− fi(s)

with T = ρi(s) and i = 1,2 are roots of discriminant obtained from
blowing up the linear subspace x1 = z = 0
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multiscoop ice-cream

For the multiscoop ice cream cone families
there is a conic fibration on X(2,[1]k);D, and the
discriminant locus this conic fibration is a union
of two Calabi–Yau (k − 2)-folds associated to
the (k − 1)-loop sunset graph

Therefore GrW
k Hk (Z(2,[1]k);Q) arises from

Hk−2(Z (1)
([1]k);Q)⊕ Hk−2(X (2)

([1]k);Q)

where Z (1)
([1]k) and Z (2)

([1]k) are distinct (k − 1)-loop sunset Calabi–Yau
(k − 2)-folds. This is supported by the computations of the PF operator
for the 2-scoop ice-cream which is of rank 4. In this case Z (1)

(1,1,1) and

Z (2)
(1,1,1) are elliptic curves, so the rank of L(2,1,1,1) agrees with the rank

of H1(Z (1)
(1,1,1);Q)⊕ H1(Z (2)

(1,1,1);Q).
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Conclusion

We have presented result toward a classification of the motives (mixed
Hodge structures) associated to Feynman graphs
▶ We have started a classification of the reflexive polytope from

Feynman integral. At one-loop reflexivity allows exists, but from
two-loop this is becoming more sparse.

▶ Can we achieve a complete classification?
▶ We have remarked that different graph share the same polytope,

which can be explained by specializing parameters. What about
geometric transitions?

We have presented that an extension of the Griffiths-Dwork algorithm
for computing differential operators for Feynman integrals
▶ The algorithm work for non-smooth case (which is the generic

case for Feynman integral) and beyond the rational case
▶ The derived Picard-Fuchs operators are compatible with the

explict Hodge theoretical construction when available.
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