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Feynman integrals are ubitquitous to many problems in physics ranging
from elementary particle physics to classical gravity computations
The generic form of a Feynman integral is

I (2) = L wr(z,x) Qg

with

Q) is the volume form on P!

n
Qo =) (1) 'xdx' Av--dxi- - A ax"
i=1

wr(z, x) is a function associated to a graph I" such that the integrand
is well defined in the completment of its polar locus in P~
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The standard motto is Feynman integral are periods of the mixed
Hodge structure after performing the appropriate blow-ups [Bioch,

Esnault, Kreimer; Brown]
M = H*(P=\Zr; T\ JTp 1 Zr)

» Zr is the singular locus of the integrand
> An C Iy = {x{ - X, = 0}is in the normal crossings divisor
> Iterated blowups are needed to separated Z and /1,

The questions we want to answer are
» What kind of motives are appearing from Feynman integrals?
» Can we evaluate these periods integrals efficiently?
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Standard type of Feynman integrals in QFT take a form

(L+1

wr(z,x) = LTE R 1_[)(”*1
Fr(x)Y
with v = 27:1 vi,LeIN, (D, vq,..., Vp) € Cn+1 .
An homogeneous degree L + 1 in P"~' polynomial
Fr(x) =Ur(x) x L(m?; x) — Vr(s, x)
» Homogeneous polynomial of degree L with v,
n

.....

Ur(x)= > Ua.a] [¥¥ @ €01}

> the mass hyperplane £(m?; x) == mix; + -+ max,
» Homogeneous polynomial of degree [+ 1
Vr(x)= > sa.a][X ac{01)
ai+---+ap=L+1 i=1
the coefficients s, ,, are linear combination of the product of
the external momenta s — {p; - p;} and relation between these

coefficients depend on the dimension D of space-time
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Laurent polynomials

In D = 2 dimensions the sunset integrand is a Laurent polynomial
Clxy, x; 1., Xn, X5 1]

n

a1 ax;. neon [ 1 oo\
02 = g L5 ‘b@(")‘(Zx-) <;’”fzx'> 4

o\ i i=1 "

The classical period is obtained by integration over the torus

T7:={|xq| =--- =[x, = 1} is the generalized Apéry series
1 n! 2.
_ n __ : 2 I
T[@_JHQO_ Z (p2)n+1 <r1!---l’n!> H(mf)
rt-trh=n =1

We have pencil w.r.t p° with the singular fiber depending on the
parameters in the Laurent polynomial

New efficient algorithms allow to compute the Picard-Fuchs equation
with respect to p2 [Lairez, Vanhove; de la Cruz, Vanhove]

Pierre Vanhove (IPhT) 26/05/2025 5/37



The Sunset Feynman graph family

An important family of Feynman integral is the sunset graph

- Qo
TOFH(t, m?; x)

FO(t, MPX) ==X -+ Xp ((Z ;) (Zm,-zxj) —P2>
=1 7 j=1

» For n = 3 we have periods of the elliptic curve

Q3 (t, m?) e H™ (P \Xo)

(X1 X2 + X1 X3 + XoX3) (MEX| + MaXa + M3X3) = PPX1XaX3
» For n = 4 we have K3 of Pic from 19 to 16 depending on values of
the parameters [Bloch, Kerr, V; Lairez, V;...]
» For n = 5 this is a nodal CY 3-folds (containing the Hulek-Verrill as
special case)
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Sunset graphs toric variety

The sunset graph polynomial

o[£ 1)

is a character of the adjoint representation of A, { with support on the
polytope generated by the A, 1 root lattice
» The Newton polytope A, for I is reflexive with only the origin as
interior point
» The toric variety X(A,_1) is the graph of the Cremona
transformations X; — 1/X; of P
X(An_1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0,..., 0), (0,1,0,..., 0),...,(0,..., 0,1) in 1
> For the two-loop sunset integral we have the del Pezzo variety dPg
(blowup of 3 points [1:0:0],[0:1:0/and [0:0: 1))
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How many reflexive polytope are associated with Feynman integrals?

We can ask how many Fano variety can arise from Feynman integral?
When

?D—v:m, Voo = (m, np) € N?

we define a Laurent polynomial from

um(uL — v
homogeneous of degree 0 because deg (UL — V) o + deg(U) ny =n
For an allowed (4, o) we have the two cases

> internal massless case m;

Dpyn, =

= = m,= i _n- unvne
n 0,|.e.Lf0_W
. o

» Vaccum graph s, — 0, i.e. V = 0: W 2£%

X1+ Xp
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One-loop graphs

One loop graphs have n edges and their Symanzik polynomials their
graph polynomials read

: _ 2 2, . _
U=x+ - +Xp;  L=mixg+-+mxs V= ) VX
1<i<j<n

Theorem (de la Cruz, Novichkov, V)

For all D such that (D — n,n— D/2) < IN? the polytope is defined by as
the convex hull of newton polygon of

qun(UL _'V)nfD/2
X1 Xp

d) I—loop _

is reflexive when L + 0
Reflexivity can be lost when L =0 when D + 2n
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The triangle graph : massive

We consider the case n = 3 corresponding to the triangle graph
_ 2 2 2
Uz = X1 + Xo + X3, L3 = MiXy + M5Xp + M5 X3
V3 = Vi2X1 X2 + Vi3X1 X3 + Vo3XoX3

Both 5 —
polytopes

and 2 — Ysltlats Vsl photh lead to the same reflexive

X1 X2 X3

X1 X2X3
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The triangle graph : massive

For L5 = 0 we have ¢5 = (x; + xo + X3) (‘%32 + 58 4 ‘%f) which leads
to a different reflexive polytope

1 dX1 dX2 dX3

s J
-
3
Vig | Vig |V X1 XoX;
T3 (x1+xz+x3)(xi;+xi:+,%f> 17273

is the p — 0 value of the sunset integral
1 dX1 ngdX3

o(pz)Js 111 2 2 2 > Xy XpX
B (g+72+73>(m1x1+m2x2+m3x3)—p 17273

3
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The pentagon graph

We consider nn = 5 corresponding to the pentagon graph

Us = X1 + -+ + Xs, L5:m12x1+~~-+m§xs, Vs = Z ViiXiX;
1<i<j<5

We have reflexive lattice polytope

3 (UsLs — Vs) MU
Om = e (M) =(2,1),(1,8),(0,5), L5 #0

The lattice polytope is the same as one of the quintic in >

X15+-~-—|-X55—511)X1“-X5

But reflexivity is lost when L5 = 0 for

Ve Uy

X (MM =(21).01,3)

11"(an,m) =
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The two-loop graphs

For two-loop Feynman graphs of (a, b, ¢)
vertices we consider the differential form

a+b+c——
(a,b,c)

(abc)Cabe) — Viabe):D)

u

| | abc D — (u a+b+c—D

where deg U4 p¢c) = 2 and deg F g p,c).p0 = 3

e ) £ (£

a b

(ab,c) Z m121XI + Z m21yl + Z mSIZI
a b
Viabe) =) > > clij. K)xyzk

i=1 j=1 k=1
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The two-loop graphs polytopes

We need to have the sum of the number of edges a + b + ¢ = 3N, i.e.
being in P27~

For (a, b, c) = (1,1, 1) this is the sunset and the toric variety dPs

The next possible case is a+ b + ¢ = 6, with

(a b,c)=1222),(32,1),(4,1,1) where V. is a cubic and

U apc) is degree 2 in IP°

graph Vb (Wabe)L(abe) + Viabe))? U?a,b,cj
(2,2,2) reflexive not reflexive reflexive
(3,2,1) reflexive not reflexive not reflexive
(4,1,1) | not reflexive not reflexive not reflexive

We see that reflexivity become sparse and for a+ b+ ¢ = 9 there is no
reflexive polytope.

After Kollar-Miyaoka-Mori we know that in any given dimension the
number of Fano varieties is finite. The search for identifying them as
Feynman integral is still on going with Leonardo de la Cruz and Pavel

Novichkov.
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Feynman Integrals are D-finite functions

Theorem [Kashiwara, Kawai; Petukhov, Smirnov; Bitoun et al.]
Feynman integrals are holonomic D-finite functions for generic
values of (D, vy, ..., Vn)

For a given subset of the physical parameters

zZ:=(z,..., z,) C {s, m*} we want to derive a Grébner basis of

minimal order differential equations

Lr(s, m?, ;) J Qr =84 r(2)

o
We construct differential operators 7. that annihilate the integrand in
cohomology
T.Qr = Lr(s, m*,0,)Qr + dBr

» We ask that 3 is holomorphic on P”~ '\ 7, i.e. it does not have
poles that are not present in O
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Feynman Integrals are twisted differential forms

In general dimension D = 26 — 2¢e with & € IN and € € R, the
Feynman integrals are twisted differential forms

J Qr,
Ap

ur(l)vfé(bq uL+1 Vit
Qr = !
r Fr(x)v-oL HX

The twists are well defined on projective space because they are
powers of homogeneous degree 0 rational functions of (x;, ..., Xn).

For e = 0 and where choosen value of 6 we get the Laurent polynomial
previously discussed, but here we want to get to the general case

Ir(s, m;v, D)

with
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In D =25 — 2¢e dimensions with 6 € IN and ¢ € C we have a twisted
differential form

ur(X)v—é(L—H uL+1 v
Qr = T v Hx 10

We consider the partial derivative a = a; + --- + a,

2N () g Pl o
024 0z, " Ja r

> The locus F = 0 as non-isolated singularities. We need to use
syzygies of Jac(Jr)

> For ¢ # 0 we have twisted differential form

We therefore adapt Griffith’s pole reduction for overcome these
difficulties.
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Extended Griffiths’ pole reduction

Reducing P! @) (x) in the Jacobian ideal of Jr-

We introduce the differential twisted form

x;CL(x) — x;CL(x - -
plana) — Z ! a(;a1/ a(X) QF Ay A - AdXA- - AdXA: - -AdXp
r

1<i<j<n

Following Griffiths’ pole reduction we reduce the pole order of J

pa-a)(x)  V-Calx)+AuCa- Viogltr . dB{™
F2 L @a—1+4Ap) P a—1+Ar

where we have defined

Au=n—(L+1)(0—¢), AF=n—L(6—¢).
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Extended Griffiths’ pole reduction

The term C. - V log 1 which has a pole in U, which is reduced by
asking that

Ca(X) - VUr = ca(x) Ur,

which is equivalent to the computation of syzygies of Jac(1l;-) using
the homogeneity of U

(LCalx) — ca(0%) - VUr =0,

Solving the linear system
Calx) - VIr = Pla1--a) (x)
Ca(x) - VUr = ca(x)Ur ’
we have the pole reduction

plai...., ar)(K)Qr V Ca( )+AuCa( ) a—1 dB(a1 ..... ar)
Fa (@—1+Ap)F2 T ) atn—LE—¢e) T
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Extended Griffiths-Dwork: syzygies

For singular hypersurface Xr ¢ P"~ the Jacobian reduction may not
be enough to reduce the pole order when k > n

For instance non-isolated singularities arise for the sunset family from
n > 4 (i.e. K3 and higher CY), as Jacbian vanishes for n > 4 for

X; =X =0, mixq+---+mx2=0 i#j

Therefore we need to take into account the syzygies because of that.

Instead of computing the resolution separatly we do solve the linear
system from the reduction in the Jacobian of F and U.

This leads to a large linear systems that are solved using finite field
method implemented in the code FiniteFlow by [peraro].
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Differential operators |

We turn to the construction of the differential operator

N(T,e)

d \* d \ &
ng = Z Z Ca1 ..... a,(f_fl, §, €, K) <aZ1> ( )

a—Q a=ajt-+ar 0z
a,-)O

such that
LEQF = dBr.

We start with the pole reduction with taking a first order derivative, and
increase the order until the extended Giriffith’s pole reduction closes.

Holonomicity of Feynman integrals imply that the algorithm finishes
because the order N(T', €) has for upper bound

N(T, e) <dim(Vr) = (=)™ Tx ((C*)"\V(Ur) U V(IT))

As it turns for many cases we have a strict inequality
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The sunset graph in dimensions
U\ € dxq dxodx:
[€ 2’ 2 :J <@> 1UA2UAZ

p@p s =] \12) "5

2 2 2 2
Fo(X) = (X1X2 + X1 X3 + X2 X3) (MTX1 + M5 X2 + M3X3) — P X1 X2X3

> Jo(x) = 0 defines an elliptic curve ¢¢

» For ¢ = 0 the integral is an elliptic dilogarithm in the regulator of a
class in the motivic conomology of the elliptic curve €5 (B1och,

Vanhove; Bloch, Kerr, Vanhove]
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The two-loop sunset graph in general dimensions

U\ © dxqdxpdx:
1€ (2. P :J <@> 10x20x3
5(p~, m") r \ 72 Folx)

Applying the algorithms we find a fourth order differential equation
=00 e ecl® + 2ol + B30+ etn!® 4507,

» The differential equation is irreducible for generic € which we
checked using the algorithms of [chyzak, Goyer, Mezzarobba]

> The operators £ are of order r
> The ¢ — 0 term factorizes £, 2%/
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The sunset graph: GauB-Manin connexion

If one considers a family of elliptic curve E

%(1)? B
AlD) 5(t) = 3gs(t)

02 gt

d
th( t)—2go(t )d

y2 =4x3—go(t)x—gs(t); j(t) = d

the periods satisfy the differential system of equations

d 35(t) d
d( v g) _ ( 12 dr('c)’g(A)(t) 2A(D) ) ( v g)

xax | — g 1 d xdx
at »rv y . 28A(t) 15 gt 108 A(f) Yy

The Picard—Fuchs operator acting on the period integral jy ax/yis

E oo, d? dA(t) ds(t)\ d
L5 = 144A(1)70(t )ﬁ + 144A(t) <6(t)dt _Amdt> i
s L 0PA(1) dA(1)\? ds(t) ., dA(t)
+ 270 (1)d(t)° +12 2 S5(t) At) — <dt > ()—12—dt A(t) g
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The two-loop sunset graph in general dimensions

US\ © dxqdxodx;
I€ 2, 2 :J <@> 1 UA2UAZ
5(p*, m°) e \72) Tl

£e=WePrgrecl® 42l 4 ol 4 etel® 450,

» The differential operator L7 is the Picard-Fuchs operator for the
elliptic curve defined by
» The deformation ¢ affects only the apparent singularities

4
Lo (1)~ A(t)? (*(26 +5) =2 (me + m§ + mj) (1+2¢) t+(7+6¢) | | p,-)
o i=1
where A(t) = 2 T]!,(t— u?) is the discriminant of the elliptic
curve 95 =0
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Apparent singularities

For a differential equation

Nf
on(2)? 7

the roots of ¢y (z) are the singularities of the differential equation. A
root of ¢y (z) where the solution f(z) is regular is called an apparent
singularity. A root of cy(z) where the solution has a singularity is a real
singularity

For the case of Feynman integrals the non-apparent (real) singularities
are the roots of the discriminant of the singular locus of the integrand
of Feynman integrals

+---+c(2)f(z) =0,

Theorem (de la Cruz, V)

The parameter e appears only in the apparent singularities of the
differential operator L5 . This means that the e deformation does not
change the position of the real singularities, but it affects the local
behaviour (the monodromy) of the solution near the singularity.
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Sunset graph Picard—Fuchs operator

Applying the algorithm to the higher dimensional family of sunset graph

. Qo
COFR(t m?; x)

Fo(t, mP x) == X1+ Xp ((Z ;) (ijzxf) —T>
i=1 7! j=1

For generic physical parameters we find a minimal order Picard—Fuchs
operator

On r
§ d n+1

L= Qr(tvmz) <dt> op=2"— (LnHJ);n > 2.
r=0

2

Q%(t, m?) e H™ P\ Xo)

supporting that we have relative periods of a Calabi—Yau of dimension
n— 2. Which is in total agreement with Verrill toric analysis.
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Tardigrade

P2 The rational differential form in P°
0®
Qp2)(t) = 0 5
p1 P3 (Uiz22)L(222) — tV(2,22))

Us(x) = (X1 + X2) (X3 + X4) + (X1 + X2) (X5 + Xg)
+ (X3 + X4) (X5 + Xs)

Vs(8, x) = 311, ke Ciyiy Vi with linear

changes (x; 1, x2i) — (Vo 1, Y2i) and

I=1,2,3 Cjx symmetric traceless i.e. C;; =0
Ps

» the algorithm gives an irreducible Picard—Fuchs operator of order
11 with an head polynomial of degree up to 215

» Using (Eric pichon-Pharabod] program, we have confirmed that
this is K3 an elliptically fiber K3 with singular fibres 14/, & 2/, & I
of Picard number 11
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Motives for two-loop graphs

For two-loop Feynman graphs of (a, b, ¢)
vertices we consider the differential form

a+b+c——

o) u(a b,c)

| | (ab.c).D 3:a+b+c D
(a,b,c);D

Qo

where deg U4 p¢c) = 2 and deg F g p,c).0 = 3
We determine the mixed Hodge structure

%a+b+cf1 — Ha+b+cf1 (]Pam71 \z(a,b,c) : ﬁ;\ﬁ; N z(a,b,c))

The method is based on quadric fibrations. The cohomology of Z; 4, ¢
is obtained by iterated extensions with Tate twists of cohomology of
hyperelliptic curves and Tate Hodge structure

We have presented some examples (a, b,c) = (1,1, 1) sunset, and
(a,b,c)= (2,2, 2) tardigrade
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Definitions

Q@ Let MHS, denote the abelian category of O-mixed Hodge
structures.

© The largest extension-closed subcategory of MHS, containing the
Tate twists of H'(C; Q) for every hyperelliptic curve C is called
MHS".

© The largest extension-closed subcategory of MHS, containing the
Tate twists of H'(£; Q) for every elliptic curve £ is called MHS{)'.

o

We have the following results for the Hodge structure of two-loop
planar graphs

[§] C.F Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove,
Motivic geometry of two-loop Feynman integrals
[arXiv:2302.14840]
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@ I13D/2 < a+ ¢ then H3+¢ ¢ MHShy".
© Suppose a< 2orc<2. Then 3 °(Z,.:Q) € MHS.

Corollary
If3D/2 < a+ c and either a < 2 or ¢ < 2 then (3¢ € MHS{).

This means that the mixed Hodge structure

H&+C(Pp — Z, (a1c) B—(BnZga1.))) is constructed by taking iterated
extensions of H' (£: ©)(—a)"" and Q(—b)" for different values of

a, b, ry, and r», and with various possibly different elliptic curves.
Therefore the Feynman integrals in this cases are built from algebraic
and elliptic functions.
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Graph double-box

Us1.3)(X)Q0
(Uz1,3)(X)L(3.1,3) (M2, X) =tV (3.1 3).0(8, X))3

Q3,13):p(t) =

For arbitrary kinematic parameters, and arbitrary space-time
dimension D, WiH°(Z 5 1 3); Q) is mixed Tate.
@ /fD>5thenGrl'H%(Z313).0;Q) = H'(C; Q)(—2) for a curve C
which has genus 2 for generic kinematic parameters.
@ /fD =4 thenGrl'H®(Z313);Q) = H'(E; Q)(—2) for a curve E
which is elliptic for generic kinematic parameters.
Q IfD < 4thenH>(Z 5 5);0) is mixed Tate.

In D = 4 the PF operator obtained by the extended Griffith—Dwork
construction is identical to the one associated with the canonical
differential form on the elliptic curve defined from the graph polynomial
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Graph ice-cream

With a regular 3 the Picard—Fuchs operator is
P4 P3 of order 2 and degree 9

d d\?
L8 = qolt) +qi(t) “’2“<dt> ,

Pz L is a Liouvillian differential equations with

only rational solutions

Proposition

> H?(Z511)(1); Q) is generically pure Tate.

> LetZ = V(Disc(Z11))(x, z 1) C P" x A" and we may define
Vi=m,.0Q,. The local system V is isomorphic to the direct sum
Ui U, ® QZB where U is a rank 1 local system and U is a rank
2 local system

» For generic kinematic and mass parameters, Sol(L 51 1)) is
isomorphic to U, = U .
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ice-cream : Picard-Fuchs operator

Letl.{, ., be local systems of rank 1, and suppose that s and s, are
sections of .y > Oy and 1., © Oy, respectively. If

d d
Ls, :Es—f1(3), LSZZCTS—"Z(S)
are the differential equations associated to s| and s, respectively, then
the differential equation associated to the section s| < s, of
(L ®lls) ® Oy is

2
532 + (f(8)? —f(8)> —f{(s) + fZ/(S))jS

+ h(8)f{ (s) — fi ()5 (8) + fi(5)2ha(s) — fr (8)a(5)?

Lsios, = (fi(s) — fa(s))
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ice-cream : Picard-Fuchs operator

After the base change

(my — m2)282 + (my + my)?
p3(s? +1)

t=

the differential operator L 1 1. is of the form given previously where
fi(s) with i = 1,2 are obtained from the application of the change of
variables T — p;(s) with i = 1,2 to the differential operator

d (m5+mi—T) d fs)
aT (M5 —ma2—T)((ms+ma2—T) ds "%

with T = p;(s) and | = 1,2 are roots of discriminant obtained from
blowing up the linear subspace x; = z =0
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multiscoop ice-cream

@ For the multiscoop ice cream cone families
there is a conic fibration on X, 11«).p, and the
discriminant locus this conic flbratlon is a union

of two Calabi—Yau (k — 2)-folds associated to
the (k — 1)-loop sunset graph

Therefore Gr,/H"(Z, ;1x): Q) arises from

Hk*2(Zm ;Q)@kaz(X((ﬁ)}k);Q)

([11%)

where Z(( and Z | are distinct (kK — 1)-loop sunset Calabi—Yau
(k— 2)-folds This i |s supported by the computations of the PF operator

for the 2-scoop ice-cream which is of rank 4. In this case Z((11’)1 4, and

Zﬁ ;) are elliptic curves, so the rank of £, 1 1 1) agrees with the rank
(1) (2)

OfH1(Z1 11 Q¢ ]H1(Z(1 1,1 Q).
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Conclusion

We have presented result toward a classification of the motives (mixed
Hodge structures) associated to Feynman graphs
» We have started a classification of the reflexive polytope from
Feynman integral. At one-loop reflexivity allows exists, but from
two-loop this is becoming more sparse.
» Can we achieve a complete classification?
> We have remarked that different graph share the same polytope,
which can be explained by specializing parameters. What about
geometric transitions?
We have presented that an extension of the Griffiths-Dwork algorithm
for computing differential operators for Feynman integrals
» The algorithm work for non-smooth case (which is the generic
case for Feynman integral) and beyond the rational case

» The derived Picard-Fuchs operators are compatible with the
explict Hodge theoretical construction when available.
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