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Warm-up: real forms

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic
variety X0 such that

X0 ×Spec(R) Spec(C) ≃ X .

Example

Let X = P1
C. Then, up to isomorphism, X admits exactly two real forms:

the conic {X 2 +Y 2 − Z 2 = 0} ⊆ P2
R; and

the ”empty” conic {X 2 +Y 2 + Z 2 = 0} ⊆ P2
R.

Key Questions

1 For a given complex variety X , does there exist a real form of X?

2 If yes, how many (up to isomorphism)?
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Connected algebraic subgroups of Crn

Goal: Study the Cremona group Crn = Bir(Pn), which is the group of
birational transformations of Pn.

If n = 1, then Cr1 = Aut(P1) = PGL2.

But if n ≥ 2, then Crn is neither an algebraic group (Demazure 1970)
nor an ind-algebraic group (Blanc-Furter 2013).

However, Crn contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Crn when n ≥ 2?

There is a complete classification when

n = 2 (Enriques 1893,
Robayo-Zimemermann 2018, Schneider-Zimmermann 2021,
Bernasconi-Fanelli-Schneider-Zimmermann 2024); or

k = k has characteristic zero and n = 3 (Enriques-Fano 1898,
Umemura 1980’s, Blanc-Fanelli-T. 2021-2023).

Ronan Terpereau Université de Lille May 2025
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Connected algebraic subgroups of Cr2

Proposition (k = k, n = 2)

Any connected algebraic subgroup of Bir(P2
k) is contained in the automorphism

group of one of the following surfaces:
● the projective plane P2

k; or
● a Hirzebruch surface Fn,k = P(OP1

k
⊕OP1

k
(n)) with n ∈ N≥0 ∖ {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(P2

k).

Proposition (k = R, n = 2)
We have an analogous result with the following surfaces:
● the projective plane P2

R;
● a Hirzebruch surface Fn,R with n ∈ N≥0 ∖ {1}; or
● the Weil restriction RC/R(P1

C) (which is a rational real form of F0,C).
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Connected algebraic subgroups of Cr3 over k = k

Theorem (k = k, n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of Bir(P3
k), then G is conjugate to an algebraic subgroup

of Aut○(X), where X → Y is one of the following Mori fiber spaces :
(a) A decomposable P1-bundle F

b,c
a Ð→ Fa with a,b ≥ 0, a /= 1, c ∈ Z, and

(a,b, c) = (0,1,−1); or
a = 0, c ≠ 1, b ≥ 2, b ≥ ∣c ∣; or
−a < c < a(b − 1); or
b = c = 0.

(b) A decomposable P1-bundle Pb Ð→ P2 for some b ≥ 2.

(c) An Umemura P1-bundle U
b,c
a Ð→ Fa for some a,b ≥ 1, c ≥ 2 with

c < b if a = 1; and
c − 2 < ab and c − 2 ≠ a(b − 1) if a ≥ 2.

(d) A Schwarzenberger P1-bundle Sb Ð→ P2 for some b = 1 or b ≥ 3.
(e) A P1-bundle Vb Ð→ P2 for some b ≥ 3.
(f) A singular P1-fibration Wb Ð→ P(1,1,2) for some b ≥ 2.
(g) A decomposable P2-bundle Rm,n Ð→ P1 for some m ≥ n ≥ 0,

with (m,n) ≠ (1,0) and
m = n or m > 2n.

(h) An Umemura quadric fibration Qg Ð→ P1 for some homogeneous
polynomial g ∈ k[u0,u1] of
even degree with at least
four roots of odd multiplicity.

(i) A rational Q-factorial Fano threefold of Picard rank 1 with terminal singularities.
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Classical strategy to tackle this problem

Let G be a connected algebraic subgroup of Crn.

1 We apply Weil’s regularization theorem [1955].
↝ G ⊆ Aut○(X ) with X a rational variety of dimension n

2 We compactify X in a G -equivariant way (Sumihiro [1974]).
↝ G ⊆ Aut○(X ) with X a rational projective variety of dimension n

3 We resolve the singularities of X in a G -equivariant way (Kollár
[2007]).
↝ G ⊆ Aut○(X ) with X a smooth rational projective variety of
dimension n

4 We apply a Minimal Model Program (MMP) to X .
↝ G ⊆ Aut○(X ) with X → Y a Mori fibration
Moreover, G also acts on Y , and π is G -equivariant.

Partial conclusion: The connected algebraic subgroups of Crn are those
that act (regularly) on rational Mori fiber spaces.
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Classical strategy to tackle this problem

Let G be a connected algebraic subgroup of Crn.

1 We apply Weil’s regularization theorem [1955].
↝ G ⊆ Aut○(X ) with X a rational variety of dimension n

2 We compactify X in a G -equivariant way (Sumihiro [1974]).
↝ G ⊆ Aut○(X ) with X a rational projective variety of dimension n

3 We resolve the singularities of X in a G -equivariant way (Kollár
[2007]).
↝ G ⊆ Aut○(X ) with X a smooth rational projective variety of
dimension n

4 We apply a Minimal Model Program (MMP) to X .

↝ G ⊆ Aut○(X ) with X → Y a Mori fibration
Moreover, G also acts on Y , and π is G -equivariant.

Partial conclusion: The connected algebraic subgroups of Crn are those
that act (regularly) on rational Mori fiber spaces.

Ronan Terpereau Université de Lille May 2025
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Connected algebraic subgroups of Cr3 over R

When the base field is R, we propose an alternative approach based on the
following observation:

Proposition

Let X be a real projective variety. If Aut○(XC) is maximal in Bir(XC),
then Aut○(X ) is maximal in Bir(X ).

Consequence:
If X is a real rational projective variety such that Aut○(XC) is a maximal
connected algebraic subgroup of Bir(P3

C), then Aut○(X ) is a maximal
connected algebraic subgroup of Bir(P3

R).
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Connected algebraic subgroups of Cr3 over R

Each family listed in the theorem is actually defined over Q (with one
exception). Therefore, in (almost) every case, there exists a trivial
real form and the study of real forms can thus be reduced to a Galois
cohomology calculation. The next step is then to determine which
real forms are rational.

ADVANTAGE: This method is much simpler than via MMP, with
fewer cases to handle.

(MAJOR) DISADVANTAGE: We are not guaranteed to obtain the
complete list of maximal connected algebraic subgroups of Bir(P3

R).
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Connected algebraic subgroups of Cr3 over R

Theorem (k = k, n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of Bir(P3
k), then G is conjugate to an algebraic subgroup

of Aut○(X), where X → Y is one of the following Mori fiber spaces :
(a) A decomposable P1-bundle F

b,c
a Ð→ Fa with a,b ≥ 0, a /= 1, c ∈ Z, and

(a,b, c) = (0,1,−1); or
a = 0, c ≠ 1, b ≥ 2, b ≥ ∣c ∣; or
−a < c < a(b − 1); or
b = c = 0.

(b) A decomposable P1-bundle Pb Ð→ P2 for some b ≥ 2.

(c) An Umemura P1-bundle U
b,c
a Ð→ Fa for some a,b ≥ 1, c ≥ 2 with

c < b if a = 1; and
c − 2 < ab and c − 2 ≠ a(b − 1) if a ≥ 2.

(d) A Schwarzenberger P1-bundle Sb Ð→ P2 for some b = 1 or b ≥ 3.
(e) A P1-bundle Vb Ð→ P2 for some b ≥ 3.
(f) A singular P1-fibration Wb Ð→ P(1,1,2) for some b ≥ 2.
(g) A decomposable P2-bundle Rm,n Ð→ P1 for some m ≥ n ≥ 0,

with (m,n) ≠ (1,0) and
m = n or m > 2n.

(h) An Umemura quadric fibration Qg Ð→ P1 for some homogeneous
polynomial g ∈ k[u0,u1] of
even degree with at least
four roots of odd multiplicity.

(i) A rational Q-factorial Fano threefold of Picard rank 1 with terminal singularities.
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Focus on Families (a)-(d)-(i)

Family (a): Two new families of P1-bundles over RC/R(P1
C).

Family (d) with b = 1: The flag variety S2,C ≃ PGL3,C/B admits two
rational real forms with automorphism groups PGL3,R and PSU(1,2).

Family (d) with b ≥ 3: The trivial real form Sb,R, which is rational,
and such that Aut(Sb,R) ≃ PGL2,R, and a nontrivial real form S̃b,R,
which is rational if b is odd and has no real points if b is even, and
such that Aut(S̃b,R) ≃ SO3,R.

Family (i): Two rational real forms for the smooth quadric Q3 in P4
R,

the quintic del Pezzo threefold Y5, and the Mukai-Umemura Fano
threefold XMU

12 .
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Focus on Families (a)-(d)-(i)

Family (a): Two new families of P1-bundles over RC/R(P1
C).

Family (d) with b = 1: The flag variety S2,C ≃ PGL3,C/B admits two
rational real forms with automorphism groups PGL3,R and PSU(1,2).

Family (d) with b ≥ 3: The trivial real form Sb,R, which is rational,
and such that Aut(Sb,R) ≃ PGL2,R, and a nontrivial real form S̃b,R,
which is rational if b is odd and has no real points if b is even, and
such that Aut(S̃b,R) ≃ SO3,R.

Family (i): Two rational real forms for the smooth quadric Q3 in P4
R,

the quintic del Pezzo threefold Y5, and the Mukai-Umemura Fano
threefold XMU

12 .

Ronan Terpereau Université de Lille May 2025
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Focus on Families (a)-(d)-(i)

Family (a): Two new families of P1-bundles over RC/R(P1
C).

Family (d) with b = 1: The flag variety S2,C ≃ PGL3,C/B admits two
rational real forms with automorphism groups PGL3,R and PSU(1,2).

Family (d) with b ≥ 3: The trivial real form Sb,R, which is rational,
and such that Aut(Sb,R) ≃ PGL2,R, and a nontrivial real form S̃b,R,
which is rational if b is odd and has no real points if b is even, and
such that Aut(S̃b,R) ≃ SO3,R.

Family (i): Two rational real forms for the smooth quadric Q3 in P4
R,

the quintic del Pezzo threefold Y5,

and the Mukai-Umemura Fano
threefold XMU

12 .

Ronan Terpereau Université de Lille May 2025
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Focus on Umemura quadric bundles (Family (h))

We consider the quadric bundles Qg → P1
C where g ∈ C[u0,u1] is a homogeneous

polynomial of degree 2n ≥ 4 that is not a square.

Qg admits a real form if and only if there exists λ ∈ C∗ and

φ = [a b
c d

] ∈ SL2(C) such that λ(g ○ φ) ∈ R[u0,u1].

The automorphism group of Aut(Qg) admits the following sequence:

1→ Aut(Qg)P1 → Aut(Qg) → F → 1,

where F is a finite subgroup of PGL2(C) and
Aut(Qg)P1 ≃ PGL2(C) ×Z/2Z.
The number of real forms of Qg ,C, which depends on F , is shown in the
following table:

Subgroup F ⊆ PGL2(C) n even (n ≥ 2) n odd (n ≥ 3)
rational ? w/o real points rational ? w/o real points

Al , l ≥ 1, l odd 2 2 0 2 2 0
Al , l ≥ 2, l even 4 4 0 2 2 0
Dl , l ≥ 3, l odd 4 4 0 2 2 0
Dl , l ≥ 2, l even 6 6 4 3 3 4
E6 2 2 4 1 1 4
E7 4 4 4 2 2 4
E8 2 2 4 1 1 4
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The number of real forms of Qg ,C, which depends on F , is shown in the
following table:

Subgroup F ⊆ PGL2(C) n even (n ≥ 2) n odd (n ≥ 3)
rational ? w/o real points rational ? w/o real points

Al , l ≥ 1, l odd 2 2 0 2 2 0
Al , l ≥ 2, l even 4 4 0 2 2 0
Dl , l ≥ 3, l odd 4 4 0 2 2 0
Dl , l ≥ 2, l even 6 6 4 3 3 4
E6 2 2 4 1 1 4
E7 4 4 4 2 2 4
E8 2 2 4 1 1 4
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Some open questions

Is the previous classification of the maximal connected algebraic
subgroups of Bir(P3

R) complete? (Probably not, work in progress.)

Can we extend the previous (even partial) classification of maximal
connected algebraic subgroups of Bir(P3

k) to an arbitrary base field k
instead of R?

What are the maximal algebraic subgroups, possibly non-connected,
of Bir(P3

k)? (The case of Bir(P2
C) was handled by Blanc in 2009.)

Let X be a three-dimensional non-rational variety such that Bir(X ) is
not an algebraic group. Can we apply the same strategy to determine
the maximal connected algebraic subgroups of Bir(X )? For example,
with X = P2 × E . (Partial results by Fong.)

What are the maximal connected algebraic subgroups of Bir(Pn)

when n ≥ 4? Is there a pattern?
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Thank you for your attention!
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