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Warm-up: real forms

Definition |
Let X be a complex algebraic variety. A real form of X is a real algebraic
variety Xo such that

Xo Xspec(r) Spec(C) = X.

Example

Let X = ]P’(lc. Then, up to isomorphism, X admits exactly two real forms:
o the conic {X?+Y?-27%2=0} cP%; and
o the "empty” conic {X?+ Y?+Z? =0} c P2.

Key Questions |
© For a given complex variety X, does there exist a real form of X7

@ If yes, how many (up to isomorphism)?
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Goal: Study the Cremona group Cr, = Bir(P"), which is the group of
birational transformations of P".

o If n=1, then Cr; = Aut(P!) = PGL;.

e But if n>2, then Cr, is neither an algebraic group (Demazure 1970)
nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr, contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Cr, when n>27?

There is a complete classification when
e n=2 (Enriques 1893,

Robayo-Zimemermann 2018, Schneider-Zimmermann 2021,
Bernasconi-Fanelli-Schneider-Zimmermann 2024); or

o k =k has characteristic zero and n = 3 (Enriques-Fano 1898,
Umemura 1980's, Blanc-Fanelli-T. 2021-2023).
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group of one of the following surfaces:

Université de Lille b 2055



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)
Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism

group of one of the following surfaces:
e the projective plane Pi;

Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)
Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or
* a Hirzebruch surface Fyx = P(Op1 @ Op1 (n)) with n e N>o ~ {1}.

Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)

Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or

* a Hirzebruch surface Fyx = P(Op1 @ Op1 (n)) with n e N>o ~ {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(IP?).

Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)

Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or

e a Hirzebruch surface Fp i = P(Op1 & Op1 (n)) with n € Nxo {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(IP?).

Proposition (k =R, n=2)

Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)

Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or

e a Hirzebruch surface Fp i = P(Op1 & Op1 (n)) with n € Nxo {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(IP?).

Proposition (k =R, n=2)

We have an analogous result with the following surfaces:

Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)

Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or

e a Hirzebruch surface Fp i = P(Op1 & Op1 (n)) with n € Nxo {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(IP?).

Proposition (k =R, n=2)

We have an analogous result with the following surfaces:
e the projective plane P2,
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Université de Lille b 205



Connected algebraic subgroups of Cr,

Proposition (k =k, n=2)

Any connected algebraic subgroup of Bir(IP?) is contained in the automorphism
group of one of the following surfaces:

e the projective plane P2; or

e a Hirzebruch surface Fp i = P(Op1 & Op1 (n)) with n € Nxo {1}.

Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal
connected algebraic subgroups of Bir(IP?).

Proposition (k =R, n=2)

We have an analogous result with the following surfaces:

e the projective plane P2,

e a Hirzebruch surface F, g with ne Nyg~ {1}, or

o the Weil restriction Rex(Pt) (which is a rational real form of Fo c).
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Theorem (k =k, n =3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of Bir(lP’z), then G is conjugate to an algebraic subgroup
of Aut®(X), where X — Y is one of the following Mori fiber spaces :

(2)

(b)

(c)

(d)
(e)
(f)
(g)

(h)

()

A decomposable

A decomposable
An Umemura

A Schwarzenberger
A

A singular

A decomposable

An Umemura

P!-bundle Fhe

P!-bundle Ph
P!-bundle ube
P!-bundle Sp
P!-bundle Vb
P!-fibration W
P2-bundle R
quadric fibration Qg

—

—

Fa

]P;Z
o

IP)Z
]PuZ
P(1,1,2)
]P>1

P!

with a,b>0, a# 1, ceZ, and
(a,b,c) =(0,1,-1); or
a=0,¢c#1,b>2, b>|c|; or
—a<c<a(b-1);or
b=c=0.

for some b > 2.

for some a,b>1,c > 2 with
c<bifa=1; and
c-2<abandc-2+a(b-1) ifa>2.
for some b=1 or b > 3.

for some b > 3.

for some b > 2.

for some m>n >0,

with (m, n) = (1,0) and
m=norm>2n.

for some homogeneous
polynomial g € k[ug, u1] of
even degree with at least

four roots of odd multiplicity.

A rational Q-factorial Fano threefold of Picard rank 1 with terminal singularities.

Ronan Terpereau
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Classical strategy to tackle this problem

Let G be a connected algebraic subgroup of Crp,.

@ We apply Weil's regularization theorem [1955].
~ G € Aut®(X) with X a rational variety of dimension n

@ We compactify X in a G-equivariant way (Sumihiro [1974]).
~ G € Aut®(X) with X a rational projective variety of dimension n

© We resolve the singularities of X in a G-equivariant way (Kollar
[2007]).
~ G € Aut®(X) with X a smooth rational projective variety of
dimension n

© We apply a Minimal Model Program (MMP) to X.
~ G ¢ Aut®(X) with X - Y a Mori fibration
Moreover, G also acts on Y, and 7 is G-equivariant.

Partial conclusion: The connected algebraic subgroups of Cr, are those
that act (regularly) on rational Mori fiber spaces.
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Let X be a real projective variety. If Aut®(Xc) is maximal in Bir(Xc),
then Aut®(X) is maximal in Bir(X).

Consequence:
If X is a real rational projective variety such that Aut®(Xc) is a maximal
connected algebraic subgroup of Bir(P3.),
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Connected algebraic subgroups of Crz over R

When the base field is R, we propose an alternative approach based on the
following observation:

Proposition

Let X be a real projective variety. If Aut®(Xc) is maximal in Bir(Xc),
then Aut®(X) is maximal in Bir(X).

Consequence:

If X is a real rational projective variety such that Aut®(Xc) is a maximal
connected algebraic subgroup of Bir(IP3), then Aut®(X) is a maximal
connected algebraic subgroup of Bir(P%).
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Connected algebraic subgroups of Crz over R

@ Each family listed in the theorem is actually defined over Q (with one
exception). Therefore, in (almost) every case, there exists a trivial
real form and the study of real forms can thus be reduced to a Galois
cohomology calculation. The next step is then to determine which
real forms are rational.

o ADVANTAGE: This method is much simpler than via MMP, with
fewer cases to handle.

e (MAJOR) DISADVANTAGE: We are not guaranteed to obtain the
complete list of maximal connected algebraic subgroups of Bir(P3).
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Connected algebraic subgroups of Crz over R

Theorem (k =k, n =3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of Bir(lP’z), then G is conjugate to an algebraic subgroup
of Aut®(X), where X — Y is one of the following Mori fiber spaces :

(2)

(b)

(c)

(d)
(e)
(f)
(g)

(h)

()

A decomposable

A decomposable
An Umemura

A Schwarzenberger
A

A singular

A decomposable

An Umemura

P!-bundle Fbe

P!-bundle Ph
P!-bundle ube
P!-bundle Sp
P!-bundle Vb
P!-fibration W
P2-bundle R
quadric fibration Qg

—

—

Fa

]P;Z
i

IP)Z
]PuZ
P(1,1,2)
]P>1

P!

with a,b>0, a#1, ceZ, and
(a,b,c) =(0,1,-1); or
a=0,¢c#1,b>2, b>|c|; or
—a<c<a(b-1);or
b=c=0.

for some b > 2.

for some a,b>1,c >2 with
c<bifa=1; and
c-2<abandc-2+a(b-1) ifa>2.
for some b=1 or b > 3.

for some b > 3.

for some b > 2.

for some m>n>0,

with (m, n) = (1,0) and
m=norm>2n.

for some homogeneous
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even degree with at least

four roots of odd multiplicity.
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If G is a connected algebraic subgroup of Bir(lP’z), then G is conjugate to an algebraic subgroup
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e Family (i): Two rational real forms for the smooth quadric Qs in P,
the quintic del Pezzo threefold Y5, and the Mukai-Umemura Fano
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e Can we extend the previous (even partial) classification of maximal
connected algebraic subgroups of Bir(Pi) to an arbitrary base field k
instead of R?

@ What are the maximal algebraic subgroups, possibly non-connected,
of Bir(P3)? (The case of Bir(P2) was handled by Blanc in 2009.)

@ Let X be a three-dimensional non-rational variety such that Bir(X) is
not an algebraic group. Can we apply the same strategy to determine
the maximal connected algebraic subgroups of Bir(X)? For example,
with X = P2 x E. (Partial results by Fong.)

@ What are the maximal connected algebraic subgroups of Bir(P")
when n > 47 |s there a pattern?
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Thank you for your attention!
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