Workshop Algebraic geometry, integrable systems and automorphic forms, 26-30 May, 2025

Maximal connected algebraic subgroups of the real Cremona group (j.w. with Susanna Zimmermann)

Workshop Algebraic geometry, integrable systems and automorphic forms, 26-30 May, 2025

Maximal connected algebraic subgroups of the real Cremona group (j.w. with Susanna Zimmermann)

References:

- Automorphisms of P¹-bundles over rational surfaces, with Jérémy Blanc and Andrea Fanelli. Épijournal de Géométrie Algébrique, Volume 6, January 2023 (47 pages).
- Connected algebraic groups acting on 3-dimensional Mori fibrations, with Jérémy Blanc and Andrea Fanelli. International Mathematics Research Notices, Volume 2023, Issue 2, January 2023, Pages 1572-1689.
- Real forms of Mori fiber spaces with many symmetries, with Susanna Zimmermann. Preprint arXiv:2403.14493.

Ronan Terpereau Université de Lille May 2025

Definition

Definition

Let X be a complex algebraic variety.

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X$$
.

Example

Let
$$X = \mathbb{P}^1_{\mathbb{C}}$$
.

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

• the conic $\{X^2 + Y^2 - Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$; and

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

- the conic $\{X^2 + Y^2 Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$; and
- the "empty" conic $\{X^2 + Y^2 + Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$.

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

- the conic $\{X^2 + Y^2 Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$; and
- the "empty" conic $\{X^2 + Y^2 + Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$.

Key Questions

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

- the conic $\{X^2 + Y^2 Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$; and
- the "empty" conic $\{X^2 + Y^2 + Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$.

Key Questions

• For a given complex variety X, does there exist a real form of X?

Ronan Terpereau Université de Lille May 2025

Definition

Let X be a complex algebraic variety. A real form of X is a real algebraic variety X_0 such that

$$X_0 \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \simeq X.$$

Example

Let $X = \mathbb{P}^1_{\mathbb{C}}$. Then, up to isomorphism, X admits exactly two real forms:

- the conic $\{X^2 + Y^2 Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$; and
- the "empty" conic $\{X^2 + Y^2 + Z^2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{R}}$.

Key Questions

- For a given complex variety X, does there exist a real form of X?
- 2 If yes, how many (up to isomorphism)?

Ronan Terpereau Université de Lille May 2025

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

• If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Question

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Cr_n when $n \ge 2$?

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Cr_n when $n \ge 2$?

There is a complete classification when

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Cr_n when $n \ge 2$?

There is a complete classification when

 n = 2 (Enriques 1893, Robayo-Zimemermann 2018, Schneider-Zimmermann 2021, Bernasconi-Fanelli-Schneider-Zimmermann 2024);

Goal: Study the *Cremona group* $Cr_n = Bir(\mathbb{P}^n)$, which is the group of birational transformations of \mathbb{P}^n .

- If n = 1, then $Cr_1 = Aut(\mathbb{P}^1) = PGL_2$.
- But if $n \ge 2$, then Cr_n is neither an algebraic group (Demazure 1970) nor an ind-algebraic group (Blanc-Furter 2013).

However, Cr_n contains many algebraic subgroups.

Question

What are the connected algebraic subgroups of Cr_n when $n \ge 2$?

There is a complete classification when

- n = 2 (Enriques 1893, Robayo-Zimemermann 2018, Schneider-Zimmermann 2021, Bernasconi-Fanelli-Schneider-Zimmermann 2024); or
- $k = \overline{k}$ has characteristic zero and n = 3 (Enriques-Fano 1898, Umemura 1980's, Blanc-Fanelli-T. 2021-2023).

Ronan Terpereau Université de Lille May 2025

Proposition (
$$k = \overline{k}, n = 2$$
)

Proposition $(k = \overline{k}, n = 2)$

Any connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^2_k)$ is contained in the automorphism group of one of the following surfaces:

• the projective plane \mathbb{P}^2_k ;

Proposition $(k = \overline{k}, n = 2)$

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\mathbb{F}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$.

Proposition $(k = \overline{k}, n = 2)$

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\mathbb{F}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$. Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^2_k)$.

Proposition ($k = \overline{k}, n = 2$)

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\widehat{\mathbb{F}}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$. Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2_k)$.

Proposition (
$$k = \mathbb{R}, n = 2$$
)

Proposition $(k = \overline{k}, n = 2)$

Any connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^2_k)$ is contained in the automorphism group of one of the following surfaces:

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\mathbb{F}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$. Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^2_k)$.

Proposition ($k = \mathbb{R}, n = 2$)

We have an analogous result with the following surfaces:

Proposition $(k = \overline{k}, n = 2)$

Any connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^2_k)$ is contained in the automorphism group of one of the following surfaces:

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\mathbb{F}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$. Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2_{\iota})$.

Proposition ($k = \mathbb{R}, n = 2$)

We have an analogous result with the following surfaces:

- the projective plane $\mathbb{P}^2_{\mathbb{R}}$;
- a Hirzebruch surface $\mathbb{F}_{n,\mathbb{R}}$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$;

Proposition $(k = \overline{k}, n = 2)$

Any connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^2_k)$ is contained in the automorphism group of one of the following surfaces:

- the projective plane \mathbb{P}^2_k ; or
- a Hirzebruch surface $\mathbb{F}_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(n))$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$. Moreover, these surfaces provide pairwise disjoint conjugacy classes of maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^2_k)$.

Proposition ($k = \mathbb{R}, n = 2$)

We have an analogous result with the following surfaces:

- the projective plane $\mathbb{P}^2_{\mathbb{R}}$;
- a Hirzebruch surface $\mathbb{F}_{n,\mathbb{R}}$ with $n \in \mathbb{N}_{\geq 0} \setminus \{1\}$; or
- the Weil restriction $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$ (which is a rational real form of $\mathbb{F}_{0,\mathbb{C}}$).

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Ronan Terpereau

Connected algebraic subgroups of Cr_3 over $k = \overline{k}$

Connected algebraic subgroups of Cr_3 over $k = \overline{k}$

Theorem ($k = \overline{k}$, n = 3, Theorem E in [BFT21])

Connected algebraic subgroups of Cr_3 over $k = \overline{k}$

Theorem (k = \overline{k} , n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^3_k)$, then G is conjugate to an algebraic subgroup of $\operatorname{Aut}^\circ(X)$, where $X \to Y$ is one of the following Mori fiber spaces :

Connected algebraic subgroups of Cr_3 over $k = \overline{k}$

Theorem (k = \overline{k} , n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^3_k)$, then G is conjugate to an algebraic subgroup of $\mathrm{Aut}^\circ(X)$, where $X \to Y$ is one of the following Mori fiber spaces :

```
(a) A decomposable \mathbb{P}^1-bundle \mathcal{F}_a^{b,c} \longrightarrow \mathbb{F}_a
                                                                                                            with a, b \ge 0, a \ne 1, c \in \mathbb{Z}, and
                                                                                                            (a, b, c) = (0, 1, -1); or
                                                                                                            a = 0, c \neq 1, b \geq 2, b \geq |c|; or
                                                                                                            -a < c < a(b-1); or
                                                                                                            b = c = 0.
                                          \mathbb{P}^1-bundle
                                                                        \begin{array}{ccc} \mathcal{P}_b & \longrightarrow & \mathbb{P}^2 \\ \mathcal{U}_a^{b,c} & \longrightarrow & \mathbb{F}_a \end{array}
(b)
          A decomposable
                                                                                                            for some b > 2.
                                          \mathbb{P}^1-bundle
(c)
          An Umemura
                                                                                                            for some a, b > 1, c > 2 with
                                                                                                            c < b if a = 1; and
                                                                                                            c - 2 < ab \text{ and } c - 2 \neq a(b - 1) \text{ if } a \geq 2.
                                                                         S_h \longrightarrow \mathbb{P}^2
(d)
          A Schwarzenberger
                                          \mathbb{P}^1-bundle
                                                                                                            for some b = 1 or b > 3.
                                                                        V_b \longrightarrow \mathbb{P}^2
                                          \mathbb{P}^1-bundle
(e)
                                                                                                            for some b > 3.
                                         \mathbb{P}^1-fibration
                                                                        \begin{array}{ccc} \mathcal{W}_b & \longrightarrow & \mathbb{P}(1,1,2) \\ \mathcal{R}_{m,n} & \longrightarrow & \mathbb{P}^1 \end{array}
(f)
          A singular
                                                                                                            for some b > 2.
          A decomposable
                                         \mathbb{P}^2-bundle
(g)
                                                                                                            for some m \ge n \ge 0,
                                                                                                            with (m, n) \neq (1, 0) and
                                                                                                            m = n or m > 2n.
                                                                           Q_{\sigma} \longrightarrow \mathbb{P}^1
(h)
          An Umemura
                                           quadric fibration
                                                                                                            for some homogeneous
                                                                                                            polynomial g \in k[u_0, u_1] of
                                                                                                            even degree with at least
                                                                                                            four roots of odd multiplicity.
(i)
         A rational O-factorial Fano threefold of Picard rank 1 with terminal singularities.
```

Let G be a connected algebraic subgroup of Cr_n .

• We apply Weil's regularization theorem [1955].

Let G be a connected algebraic subgroup of Cr_n .

• We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- We compactify X in a G-equivariant way (Sumihiro [1974]).

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a rational projective variety of dimension n

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).
 - \Rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a smooth rational projective variety of dimension n

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).
 - \Rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a smooth rational projective variety of dimension n
- We apply a Minimal Model Program (MMP) to X.

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).
 - \Rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a smooth rational projective variety of dimension n
- We apply a Minimal Model Program (MMP) to X.
 - \rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with $X \rightarrow Y$ a Mori fibration

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).
 - \Rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a smooth rational projective variety of dimension n
- We apply a Minimal Model Program (MMP) to X.
 → G ⊆ Aut°(X) with X → Y a Mori fibration
 Moreover, G also acts on Y, and π is G-equivariant.

Let G be a connected algebraic subgroup of Cr_n .

- We apply Weil's regularization theorem [1955]. $\rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational* variety of dimension n
- ② We compactify X in a G-equivariant way (Sumihiro [1974]). $\Rightarrow G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a *rational projective* variety of dimension n
- **3** We resolve the singularities of X in a G-equivariant way (Kollár [2007]).
 - \Rightarrow $G \subseteq \operatorname{Aut}^{\circ}(X)$ with X a smooth rational projective variety of dimension n
- We apply a Minimal Model Program (MMP) to X.
 → G ⊆ Aut°(X) with X → Y a Mori fibration
 Moreover, G also acts on Y, and π is G-equivariant.

Partial conclusion: The connected algebraic subgroups of Cr_n are those that act (regularly) on rational Mori fiber spaces.

Ronan Terpereau Université de Lille May 2025

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

Let X be a real projective variety.

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

Let X be a real projective variety. If $\operatorname{Aut}^{\circ}(X_{\mathbb{C}})$ is maximal in $\operatorname{Bir}(X_{\mathbb{C}})$, then $\operatorname{Aut}^{\circ}(X)$ is maximal in $\operatorname{Bir}(X)$.

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

Let X be a real projective variety. If $\operatorname{Aut}^{\circ}(X_{\mathbb{C}})$ is maximal in $\operatorname{Bir}(X_{\mathbb{C}})$, then $\operatorname{Aut}^{\circ}(X)$ is maximal in $\operatorname{Bir}(X)$.

Consequence:

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

Let X be a real projective variety. If $\operatorname{Aut}^{\circ}(X_{\mathbb{C}})$ is maximal in $\operatorname{Bir}(X_{\mathbb{C}})$, then $\operatorname{Aut}^{\circ}(X)$ is maximal in $\operatorname{Bir}(X)$.

Consequence:

If X is a real rational projective variety such that $\operatorname{Aut}^{\circ}(X_{\mathbb{C}})$ is a maximal connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})$,

When the base field is \mathbb{R} , we propose an alternative approach based on the following observation:

Proposition

Let X be a real projective variety. If $\operatorname{Aut}^{\circ}(X_{\mathbb{C}})$ is maximal in $\operatorname{Bir}(X_{\mathbb{C}})$, then $\operatorname{Aut}^{\circ}(X)$ is maximal in $\operatorname{Bir}(X)$.

Consequence:

If X is a real rational projective variety such that $\operatorname{Aut}^\circ(X_\mathbb{C})$ is a maximal connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^3_\mathbb{C})$, then $\operatorname{Aut}^\circ(X)$ is a maximal connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^3_\mathbb{R})$.

ullet Each family listed in the theorem is actually defined over $\mathbb Q$ (with one exception).

 Each family listed in the theorem is actually defined over Q (with one exception). Therefore, in (almost) every case, there exists a trivial real form

• Each family listed in the theorem is actually defined over \mathbb{Q} (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation.

• Each family listed in the theorem is actually defined over \mathbb{Q} (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation. The next step is then to determine which real forms are rational.

 Each family listed in the theorem is actually defined over Q (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation. The next step is then to determine which real forms are rational.

ADVANTAGE:

- Each family listed in the theorem is actually defined over Q (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation. The next step is then to determine which real forms are rational.
- **ADVANTAGE**: This method is much simpler than via MMP, with fewer cases to handle.

- Each family listed in the theorem is actually defined over \mathbb{Q} (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation. The next step is then to determine which real forms are rational.
- ADVANTAGE: This method is much simpler than via MMP, with fewer cases to handle.
- (MAJOR) DISADVANTAGE:

- Each family listed in the theorem is actually defined over Q (with one exception). Therefore, in (almost) every case, there exists a trivial real form and the study of real forms can thus be reduced to a Galois cohomology calculation. The next step is then to determine which real forms are rational.
- ADVANTAGE: This method is much simpler than via MMP, with fewer cases to handle.
- (MAJOR) DISADVANTAGE: We are not guaranteed to obtain the complete list of maximal connected algebraic subgroups of $\operatorname{Bir}(\mathbb{P}^3_\mathbb{R})$.

Theorem (k = \overline{k} , n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of $\mathrm{Bir}(\mathbb{P}^3_k)$, then G is conjugate to an algebraic subgroup of $\mathrm{Aut}^\circ(X)$, where $X \to Y$ is one of the following Mori fiber spaces :

```
(a) A decomposable \mathbb{P}^1-bundle \mathcal{F}_a^{b,c} \longrightarrow \mathbb{F}_a
                                                                                                            with a, b \ge 0, a \ne 1, c \in \mathbb{Z}, and
                                                                                                            (a, b, c) = (0, 1, -1); or
                                                                                                            a = 0, c \neq 1, b \geq 2, b \geq |c|; or
                                                                                                            -a < c < a(b-1); or
                                                                                                            b = c = 0.
                                          \mathbb{P}^1-bundle
                                                                        \begin{array}{ccc} \mathcal{P}_b & \longrightarrow & \mathbb{P}^2 \\ \mathcal{U}_a^{b,c} & \longrightarrow & \mathbb{F}_a \end{array}
(b)
          A decomposable
                                                                                                            for some b > 2.
                                          \mathbb{P}^1-bundle
(c)
          An Umemura
                                                                                                            for some a, b > 1, c > 2 with
                                                                                                            c < b if a = 1; and
                                                                                                            c - 2 < ab \text{ and } c - 2 \neq a(b - 1) \text{ if } a \geq 2.
                                                                         S_h \longrightarrow \mathbb{P}^2
(d)
          A Schwarzenberger
                                          \mathbb{P}^1-bundle
                                                                                                            for some b = 1 or b > 3.
                                                                        V_b \longrightarrow \mathbb{P}^2
                                          \mathbb{P}^1-bundle
                                                                                                            for some b > 3.
(e)
                                         \mathbb{P}^1-fibration
                                                                        \begin{array}{ccc} \mathcal{W}_b & \longrightarrow & \mathbb{P}(1,1,2) \\ \mathcal{R}_{m,n} & \longrightarrow & \mathbb{P}^1 \end{array}
(f)
          A singular
                                                                                                            for some b > 2.
          A decomposable
                                         \mathbb{P}^2-bundle
(g)
                                                                                                            for some m \ge n \ge 0,
                                                                                                            with (m, n) \neq (1, 0) and
                                                                                                            m = n or m > 2n.
                                                                           Q_{\sigma} \longrightarrow \mathbb{P}^1
(h)
          An Umemura
                                           quadric fibration
                                                                                                            for some homogeneous
                                                                                                            polynomial g \in k[u_0, u_1] of
                                                                                                            even degree with at least
                                                                                                            four roots of odd multiplicity.
(i)
         A rational O-factorial Fano threefold of Picard rank 1 with terminal singularities.
```

Ronan Terpereau Université de Lille May 2025

Theorem (k = \overline{k} , n = 3, Theorem E in [BFT21])

If G is a connected algebraic subgroup of $\operatorname{Bir}(\mathbb{P}^3_k)$, then G is conjugate to an algebraic subgroup of $\operatorname{Aut}^{\circ}(X)$, where $X \to Y$ is one of the following Mori fiber spaces :

```
(a) A decomposable \mathbb{P}^1-bundle \mathcal{F}_a^{b,c} \longrightarrow \mathbb{F}_a
                                                                                                            with a, b \ge 0, a \ne 1, c \in \mathbb{Z}, and
                                                                                                            (a, b, c) = (0, 1, -1); or
                                                                                                            a = 0, c \neq 1, b \geq 2, b \geq |c|; or
                                                                                                            -a < c < a(b-1); or
                                                                                                            b = c = 0.
                                          \mathbb{P}^1-bundle
                                                                        \begin{array}{ccc} \mathcal{P}_b & \longrightarrow & \mathbb{P}^2 \\ \mathcal{U}_a^{b,c} & \longrightarrow & \mathbb{F}_a \end{array}
(b)
          A decomposable
                                                                                                            for some b > 2.
                                          \mathbb{P}^1-bundle
(c)
          An Umemura
                                                                                                            for some a, b > 1, c > 2 with
                                                                                                            c < b if a = 1; and
                                                                                                            c - 2 < ab \text{ and } c - 2 \neq a(b - 1) \text{ if } a \geq 2.
                                                                         S_h \longrightarrow \mathbb{P}^2
          A Schwarzenberger
                                          \mathbb{P}^1-bundle
                                                                                                            for some b = 1 or b > 3.
                                                                        V_b \longrightarrow \mathbb{P}^2
                                          \mathbb{P}^1-bundle
                                                                                                            for some b > 3.
(e)
                                         \mathbb{P}^1-fibration
                                                                        \begin{array}{ccc} \mathcal{W}_b & \longrightarrow & \mathbb{P}(1,1,2) \\ \mathcal{R}_{m,n} & \longrightarrow & \mathbb{P}^1 \end{array}
(f)
          A singular
                                                                                                            for some b > 2.
          A decomposable
                                         \mathbb{P}^2-bundle
(g)
                                                                                                            for some m \ge n \ge 0,
                                                                                                            with (m, n) \neq (1, 0) and
                                                                                                            m = n or m > 2n.
                                                                           Q_{\sigma} \longrightarrow \mathbb{P}^1
(h)
          An Umemura
                                           quadric fibration
                                                                                                            for some homogeneous
                                                                                                            polynomial g \in k[u_0, u_1] of
                                                                                                            even degree with at least
                                                                                                            four roots of odd multiplicity.
         A rational O-factorial Fano threefold of Picard rank 1 with terminal singularities.
```

Focus on Families (a)-(d)-(i)

Focus on Families (a)-(d)-(i)

• Family (a):

ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.

- Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1:

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$:

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $S_{b,\mathbb{R}}$,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $S_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(S_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{S}_{b,\mathbb{R}}$,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b=1: The flag variety $\mathcal{S}_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b=1: The flag variety $\mathcal{S}_{2,\mathbb{C}} \simeq \mathrm{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\mathrm{PGL}_{3,\mathbb{R}}$ and $\mathrm{PSU}(1,2)$.
- Family (d) with $b \geq 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \geq 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.
- Family (i):

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b=1: The flag variety $\mathcal{S}_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \geq 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.
- Family (i): Two rational real forms for

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b=1: The flag variety $\mathcal{S}_{2,\mathbb{C}} \simeq \mathrm{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\mathrm{PGL}_{3,\mathbb{R}}$ and $\mathrm{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.
- ullet Family (i): Two rational real forms for the smooth quadric Q_3 in $\mathbb{P}^4_\mathbb{R}$,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.
- Family (i): Two rational real forms for the smooth quadric Q_3 in $\mathbb{P}^4_{\mathbb{R}}$, the quintic del Pezzo threefold Y_5 ,

- ullet Family (a): Two new families of \mathbb{P}^1 -bundles over $\mathcal{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$.
- Family (d) with b = 1: The flag variety $S_{2,\mathbb{C}} \simeq \operatorname{PGL}_{3,\mathbb{C}}/B$ admits two rational real forms with automorphism groups $\operatorname{PGL}_{3,\mathbb{R}}$ and $\operatorname{PSU}(1,2)$.
- Family (d) with $b \ge 3$: The trivial real form $\mathcal{S}_{b,\mathbb{R}}$, which is rational, and such that $\operatorname{Aut}(\mathcal{S}_{b,\mathbb{R}}) \simeq \operatorname{PGL}_{2,\mathbb{R}}$, and a nontrivial real form $\widetilde{\mathcal{S}}_{b,\mathbb{R}}$, which is rational if b is odd and has no real points if b is even, and such that $\operatorname{Aut}(\widetilde{\mathcal{S}}_{b,\mathbb{R}}) \simeq \operatorname{SO}_{3,\mathbb{R}}$.
- Family (i): Two rational real forms for the smooth quadric Q_3 in $\mathbb{P}^4_{\mathbb{R}}$, the quintic del Pezzo threefold Y_5 , and the Mukai-Umemura Fano threefold X_{12}^{MU} .

We consider the quadric bundles $\mathcal{Q}_g o \mathbb{P}^1_\mathbb{C}$

We consider the quadric bundles $\mathcal{Q}_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

We consider the quadric bundles $\mathcal{Q}_g \to \mathbb{P}^1_\mathbb{C}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

ullet \mathcal{Q}_g admits a real form if and only if

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

• Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- \mathcal{Q}_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- The automorphism group of $\operatorname{Aut}(\mathcal{Q}_{\mathfrak{g}})$ admits the following sequence:

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- The automorphism group of $Aut(Q_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$

We consider the quadric bundles $\mathcal{Q}_g \to \mathbb{P}^1_\mathbb{C}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

ullet The number of real forms of $\mathcal{Q}_{g,\mathbb{C}}$,

Ronan Terpereau

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

• The number of real forms of $Q_{g,\mathbb{C}}$, which depends on F,

Ronan Terpereau

We consider the quadric bundles $\mathcal{Q}_g \to \mathbb{P}^1_\mathbb{C}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- Q_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

• The number of real forms of $Q_{g,\mathbb{C}}$, which depends on F, is shown in the following table:

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- \mathcal{Q}_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

• The number of real forms of $Q_{g,\mathbb{C}}$, which depends on F, is shown in the following table:

Subgroup $F \subseteq \operatorname{PGL}_2(\mathbb{C})$	n even $(n \ge 2)$			$n \text{ odd } (n \ge 3)$		
	rational	?	w/o real points	rational	?	w/o real points
$A_l, l \ge 1, l \text{ odd}$	2	2	0	2	2	0
$A_I, I \ge 2, I \text{ even}$	4	4	0	2	2	0
D_I , $I \ge 3$, I odd	4	4	0	2	2	0
D_I , $I \ge 2$, I even	6	6	4	3	3	4
E ₆	2	2	4	1	1	4
E ₇	4	4	4	2	2	4
E ₈	2	2	4	1	_ 1	_ 4

We consider the quadric bundles $Q_g \to \mathbb{P}^1_{\mathbb{C}}$ where $g \in \mathbb{C}[u_0, u_1]$ is a homogeneous polynomial of degree $2n \geq 4$ that is not a square.

- \mathcal{Q}_g admits a real form if and only if there exists $\lambda \in \mathbb{C}^*$ and $\varphi = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{C})$ such that $\lambda(g \circ \varphi) \in \mathbb{R}[u_0, u_1]$.
- ullet The automorphism group of $\operatorname{Aut}(\mathcal{Q}_g)$ admits the following sequence:

$$1 \to \operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \to \operatorname{Aut}(\mathcal{Q}_g) \to F \to 1,$$

where F is a finite subgroup of $\operatorname{PGL}_2(\mathbb{C})$ and $\operatorname{Aut}(\mathcal{Q}_g)_{\mathbb{P}^1} \simeq \operatorname{PGL}_2(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z}$.

• The number of real forms of $Q_{g,\mathbb{C}}$, which depends on F, is shown in the following table:

Subgroup $F \subseteq \operatorname{PGL}_2(\mathbb{C})$	n even $(n \ge 2)$			$n \text{ odd } (n \ge 3)$		
	rational	?	w/o real points	rational	?	w/o real points
$A_l, l \ge 1, l \text{ odd}$	2	2	0	2	2	0
$A_I, I \ge 2, I \text{ even}$	4	4	0	2	2	0
D_I , $I \ge 3$, I odd	4	4	0	2	2	0
D_I , $I \ge 2$, I even	6	6	4	3	3	4
E ₆	2	2	4	1	1	4
E ₇	4	4	4	2	2	4
E ₈	2	2	4	1	_ 1	_ 4

• Is the previous classification of the maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_{\mathbb{R}})$ complete?

• Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of Bir(P³_k)?

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of $\mathrm{Bir}(\mathbb{P}^3_k)$? (The case of $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ was handled by Blanc in 2009.)

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of $\mathrm{Bir}(\mathbb{P}^3_k)$? (The case of $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ was handled by Blanc in 2009.)
- Let X be a three-dimensional non-rational variety such that Bir(X) is not an algebraic group.

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of $\mathrm{Bir}(\mathbb{P}^3_k)$? (The case of $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ was handled by Blanc in 2009.)
- Let X be a three-dimensional non-rational variety such that $\operatorname{Bir}(X)$ is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(X)$?

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of $\mathrm{Bir}(\mathbb{P}^3_k)$? (The case of $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ was handled by Blanc in 2009.)
- Let X be a three-dimensional non-rational variety such that $\operatorname{Bir}(X)$ is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(X)$? For example, with $X = \mathbb{P}^2 \times E$. (Partial results by Fong.)

- Is the previous classification of the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3_\mathbb{R})$ complete? (Probably not, work in progress.)
- Can we extend the previous (even partial) classification of maximal connected algebraic subgroups of $Bir(\mathbb{P}^3_k)$ to an arbitrary base field k instead of \mathbb{R} ?
- What are the maximal algebraic subgroups, possibly non-connected, of $\mathrm{Bir}(\mathbb{P}^3_k)$? (The case of $\mathrm{Bir}(\mathbb{P}^2_{\mathbb{C}})$ was handled by Blanc in 2009.)
- Let X be a three-dimensional non-rational variety such that $\operatorname{Bir}(X)$ is not an algebraic group. Can we apply the same strategy to determine the maximal connected algebraic subgroups of $\operatorname{Bir}(X)$? For example, with $X = \mathbb{P}^2 \times E$. (Partial results by Fong.)
- What are the maximal connected algebraic subgroups of $Bir(\mathbb{P}^n)$ when $n \ge 4$? Is there a pattern?

Thank you for your attention!