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‘We consider certain convolution sums that are the subject of a conjecture by Chester,
Green, Pufu, Wang, and Wen in string theory. We prove a generalized form of their
conjecture, explicitly evaluating absolutely convergent sums

Z @(n1, n — 11)C2m, (11)O2my (n — m1),
nm €Z~{0,n}

where @(71,72) is a Laurent polynomial with logarithms. Contrary to original
expectations, such convolution sums, suitably extended to #; € {0, n}, do not vanish,
but instead, they carry number theoretic meaning in the form of Fourier coefficients
of holomorphic cusp forms.

modular forms | convolution sums | L-values | graviton scattering

In this paper we establish an identity giving a relationship between convolution sums of
divisor functions o,(n) := }_,,d" with r € 2Z>¢ and Fourier coefficients of Hecke

eigenforms. For example, our main result implies that for 7 # 0,

l[/(nl, nz)(iz(nl)dz(nz) = —(C(z)n2+420€/(—2))02(7l)— M
2

8L(A,5)|n? ’
n1,np €Z~{0}
n+my=n
[1]
where y(n1, my) = %(t]/(nl, mp) + @ (ma, n1)) for §(ny, ny) defined as
1 T 3541
n—§ + 28 109943 + 157503y + (420183 — 2100777) log | 211 ) ,

(m + m)3 n n

and L(A, s) is the L-function of the weight 12 cusp form A(z) = Y _, (n)e?™"=.
Such an identity is unexpected, and as far as the authors are aware, the only known
relationship between divisor functions and the Ramanujan 7 function involves finite sums
of odd index divisor functions (1). Generally, shifted convolution sums are of number
theoretic interest due to their connection to moments of and subconvexity bounds for
L-functions (2—4). However, identities such as [1] would be difficult to discover outside
of their natural context and, in this case, the investigation of the particular weighted
sums is motivated by string theory.

Specifically, sums of the form Eq. 1 appear as part of the low energy expansion of the
4-graviton scattering amplitude as well as related calculations in the N' = 4 Super-Yang-
Mills (SYM) gauge theory via the anti-de Sitter/conformal field theory correspondence
(5-10). On the one hand, the appearance of holomorphic cusp forms in this context is
unanticipated as they do not appear in corresponding localized computations (5). On the
other hand, when computing the full integrated correlator, the exact identity established
in Theorem 1 together with Manin’s Period Theorem allows one to see that these cusp
forms exactly cancel. This cancellation suggests that the large-V expansion of certain
integrals of the correlator of superconformal primary operators in the N' = 4 stress
tensor multiplet can be written as lattice sums (5).

Our work was originally motivated by a conjecture from string theory of Chester,
Green, Pufu, Wang, and Wen in (6, Section C.1(a)) that a particular shifted convolution
sum vanishes, and Theorem 1 proves this conjecture. Explicitly, their conjecture can be
written as

b) 2
Z @(m, m)oa(m)or(nz) = (% + 30C’(—2)> o2(n), 2]
n1,np €Z~{0}
n+ny=n

where
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+ <15 _ 0m )log —
n +m n
Note that, unlike [1], there is no term involving Fourier
coefficients of a cusp form in Eq. 2. This conjecture arose from
the fact that a constant multiple of the summation (plus the
negation of the right side) in Eq. 2 appears in the homogeneous
part of the Fourier expansion of a translation invariant solution
to the equation

(A= 12)f(z) = — (20 (3)E3/2(2))* [4]

where A = 52 (ag v aj) on SLy(Z)\ SL2(R)/ SO4(R) = M\ H

and E;(z) is the nonholomorphic Eisenstein series

E(z) = Z

ye(BNT)\I

Im(yz)’, forRe(s) > 1

for B the Borel subgroup in SL,(R) fixing co € H. Such
solutions f(z) to Eq. 4 give the D°R* coefficient of the low
energy expansion of the 4-graviton scattering amplitude in
10-dimensional type IIB string theory (8-10). For physical
reasons, it was expected that the homogenous solution should
vanish.

In ref. 11, a formal argument was given for Eq. 2; however, the
argument relied on evaluating a double Dirichlet series outside its
region of convergence, and the authors were unable to make this
argument rigorous. Beyond looking for a rigorous proof of the
conjecture, it is natural to ask whether other convolution sums
similar to Eq. 2 might also hold. Explicitly, we can generate a
family of convolution sums via computing homogeneous parts
of the Fourier expansion of the solutions to differential equations
of the form

(A =s(s+1))f(z) = E.(2)Ep(2) (5]
for other values 4, 4, and s in R on I'\H. Solutions f(z) =

E(s, a4, b, 7, z) to Eq. 5 are sometimes called generalized Eisenstein
series and appear in calculations in A" = 4 SYM gauge theory (7)
and physicists wondered whether the corresponding sums also
vanish, giving identities similar to Eq. 2. Numerical evidence
told a surprisingly different story. In fact, instead of vanishing,
these sums yield Fourier coefficients of modular forms as we will
see in the statement of Theorem 1.

To state our main result precisely, recall the definition of Jacobi
functions of the second kind [see (12, p. 172) forx € C~\[—1, 1],
(13, section 4.61)]:

) (k=) *(x+1)77
Q) =
1 _ \d+a d+p
(1 =01+ ) Pdr
) /_1 (x — )4t -

which we extend to x € (—1,1) by setting Qﬁa’ﬂ) (x) =

%(Qy{’ﬂ) (x+40) + ng’ﬂ) (x—i0)). We will only discuss Qﬂ(ia’ﬂ)
for @, f € Zxo (more precisely, for a, f € 2Z=p), in which
case the expression on the right in Eq. 6 is single-valued in the
cut plane C ~\ [—1, 1] and defines an elementary function (see
Proposition 1 below).
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Theorem 1. Let d € Zwo and r,ry € 2Zso. Then, for any

ne Z>0,
5 ny —nm
Z Qﬂ([n ) <T)g,l (n1)0r, (n2)
A () e
ni+my=n

= (=112 (o, (n) = 2 (n)6, (n) + % 7]

where
200y _ | Gt + (X s 2o
a % (Hd+a + Hy —log |47r2n|) , p=0,

where Hy is the d-th harmonic number and h(t) ==, | ang”
is a cusp form of weight -

k:=2d+r+nrn+2

on SLy(Z), given by h = Zf Arf, where [ runs over normalized
Hecke eigenforms™ of weight k and level 1, and

A _m(=1) TR N IX(fd + 1) (fr 4 d+ 1)
T d )

Here, {fg) = fF\H F(2)g(2)y*2dxdy denotes the Petersson
inner product, and L*(f, -) is the completed L-function of f :

L*(fs) = 2x) T (s)L(£s).

For n < 0, the identity [7] remains true if we write

a .
1 instead

]
of Z—Z,.

To see how this statement applies to solutions of differential
equations of the form Eq. 5, we note that for 2, 6 € 1/2 + Z~
and s large enough, the homogeneous solution to Eq. 5 is given by

Z /7K1 2 (27| nly) 27
nel

for K;(z) the modified Bessel function of the second kind and a,,
is a multiple of

> QM (B Yo (m)en(m)

n n
n1,m €Z~{0} 1w
n+ny=n

+ (=) 20 ()6, () + 20 (n)ay (),

where ry =224 — 1,7 =2b—1,andd =5+ 1 —a — b (see
ref. 14).

In what remains of the introduction, we will discuss other work
related to convolution sums of divisor functions. In Section 1.2,
we give a corollary of Theorem 1 which expresses [7] in terms
of polynomials and logarithms as opposed to Jacobi functions
of the second kind. We will also provide some examples of
identities of the form in Eq. 7 and discuss the ramifications
of Theorem 1 in physics. In Section 2, we will establish properties
of the Jacobi function with integer parameters which we later
use in the proof of our main result. In Section 3, we will first
prove some integral identities involving Whittaker functions. We
then provide a precise statement of the Holomorphic Projection
Lemma which we will then use to prove Theorem 1.

*We say that a Hecke eigenform is normalized if its first nonzero Fourier coefficient is
equal to 1.
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1.1. Related Results. Before the full theory of modular forms
had been developed, Jacobi, Glaisher (15), and Ramanujan (1)

examined sums involving divisor functions. The formula

N-1

Y 3o (N =) = = (o7 (V) — o3(N)) (8

n=1

was attributed to Jacobi' (16). In 1885, Glaisher gave expressions
for the first powers of series where the coefficients are the sums of
divisor function (15). Motivated by generalizing [8], Ramanujan
manipulated what would later be known as the Eisenstein series
E», E4, and Eg to study finite convolution sums of odd divisor
functions (1, pp. 136-162). Later in 1969, Lahiri found identities
involving sums of 6 shifted by pentagonal numbers (17).

Generally, identities similar to Eq. 8 involving finite convo-
lution sums of odd divisor functions can be found using holo-
morphic Eisenstein series by computing the Fourier coefficients
of their products or Rankin-Cohen brackets (18, pp. 18 and 56).
Many other examples of such formulas were derived in a recent
work of O’Sullivan (19) using holomorphic projection. However,
none of these identities treat even index divisor functions nor
infinite sums of them as in Eq. 7.

Perhaps more closely related to this work, Diamantis proved
that one can express quotients of values of L-functions asso-
ciated to a normalized cusp form in terms of certain shifted
convolution sums (20, Theorem 1.1). The formula in Eq. 7
gives an explicit form of such an expression. Motohashi gives
a representation in terms of spectral data of a weighted sum of
divisor functions Y o, 6o(n)oo(n+ f)W (n/f), where f > 1
and W e C§°(R.o) (16, Theorem 3).

1.2. Corollaries and Applications. As they appear in string theory,
it is not obvious that these divisor sums can be expressed in
terms of Jacobi functions. It may be useful to instead think of
these weightings as combinations of polynomials in 7;, 1/7;, and
log || forj =1,2.

Corollary 1. Forri,r) € 2250, d € Z=o and n > 0, let

d—1
nl,nz Z A 72] + Z B]ﬂ]z
j==n j==n
. | )
+ Z (C}n]l log |n1| + Djn/zlog |n2|)
=0

be such that @(m, n — n1) = O(n; —d-n-n- Y for m — o0,
Then, for ny + ny = n,

§0(n1, ﬂZ) = FE{”I”Z) Qg(lrl)m) <n2 — ”1) [10]

ny + n
and thus
S @l m2)0 (1) (m2) = TG
n+ny=n
n1ny 70
71,7 " dﬂ
) I:(_l)dzt(i 1 2)(71)0',1 (n) = Ztg’? 1)(”)O-r2(7l) + ﬁ] >

TWe were unable to find a primary source for this result.
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where Zéa,ﬂ) and a, are as defined in Theorem 1, and

420”(71 + 7+ d)

(ror) d+1
ry? = ()™ cm
d e v 2

(11]

where Cy is as in Eq. 9.

Note that the values of the constants 4;, B;, Cj, and D; are
fixed by Egs. 10 and 11.

Forr = r = 0 or ri7y # 0, the first two terms on the right-
hand side of Eq. 7 coincide with the ones predicted formally
in ref. 21. In the case when there are no cusp forms of weight
k = 2d + r + r + 2, the predictions given by the formal
arguments in refs. 11 and 21 are proven by Theorem 1. Explicitly,
when specifying 1 = r» = 2 and d = 1, since there are no cusp
forms of weight 8, Corollary 1 proves the identity [2] as originally
conjectured in ref. 6. Moreover, Corollary 1 proves the conjectures
in ref. 21 by showing that when 7| =, = 0 and d = 1, we have

ni

> oo(mou(m)[ " log |-

+2]
n
n1,n) €Z~{0} [12]

n+ny=n
=(2—log (47r2|n|))0'0(n),
and, when r; = r, = 0 and 4 = 3, we get that

Z o0(m1)00(n2) w1 (11, m2)

ny,np €L~{0}
n+ny=n

= (11 — 3log(4ﬂ2|n|)) oo(n),

where y (71, 72) equals

3 2 2 3
. 60717 _ 3n] — 27niny + 27n1ny — 3n; log

n? n3

ni
n2

for n = ny + ny.
Furthermore, when analyzing the homogeneous solution to
Eq.5fora = 6= 3/2 and s = 5, a constant multiple of

Z w(m, m)oa(m)oz(ny)

n1,np €Z~{0}

n+ny=n
for y as in Eq. 2 appears. Using Corollary 1 when r; = r, = 2
and d = 3, one sees that [1] holds. As a final example, in the
homogeneous solution to Eq. 5 for 2 = 3/2, b = 5/2, and
s = 11 involves a constant multiple of the sum

Z o2(m)o4(n2)wa(n1, n2), [13]
n1,m €Z~{0}
n+ny=n
where
(n1, ) = 71067, 22287x8 N 84626n, 1107894
valmem) =7 0 3n0 6nt
3328677  3893nm0  2614m 1727
513 3n? 21n 420 63m
n n? 22n 117* n nt
81907  G3my 136543 409543 1801807
~ (nnff _ 6n[my  924n$n3  2112nm3  2310s{n]
118 ﬂ8 }18 ﬂg ﬂs

1232;11712 n 308711112 _ 32n1n§ n é)log‘ﬂ‘

718 778 7[8 n

https://doi.org/10.1073/pnas.2322320121
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Using 71 = 2, r, = 4, and d = 8 in Corollary 1, we get that [13]

is equal to
( )i, 33§(5)>52(n)+ (—@ﬂ2+®>ﬁ4(”)+@

180180 474 8190 472 ns’
where
- L(9,A) ( 3551
. 2wing =_2J 7 (994 22
;” ‘ 168L(8,f1) Jraare )1
L9, f) 3551

— (2 fa(2)
168L(8, /5) - V144169

and

fiz) = ™ + (540 — 124/144169)"7 +
F(z) = 77 4+ (540 4 124/144169) 7% +

are normalized Hecke eigenforms of weight 24.

One implication of Theorem 1 is that certain linear combi-
nations of generalized Eisenstein series £(s, 4, 6, z, z) arising in
physics have no cuspidal components. Such linear combinations
of generalized Eisenstein series occur when examining the
regularized large N expansion of certain integrated correlators
in SU(N) N = 4 SYM theory. Specifically, it was recently
understood that the four superconformal primary operators in the
N = 4 stress tensor multiplet are obtained from derivatives of the
partition Z of the mass-deformed SU(N) N = 4 SYM theory
placed on a squashed four-sphere (22, 23). For the partition
function Z, the N ™3-term of 831 log Z|,u=0,=1 (6, section 2.13)
is given by

33 _ 33 _

az & (3, > z,z, z> + Z |:a,5 (r, > z,z, z)
7 3
2 2

r=5,7,9
55 _
+ﬂr5<7,z,z,z, >+7;«g< ,Z>:|,

where a;, f; and y; are all constants defined in ref. 6, section 2.14.
When » = 5, we expect the terms in the Fourier expansions

3 3 = 55
of £(rn3,2.22), £(rn3.3,5%), and € (1 4, 2,2 2) which

correspond to the homogeneous solution to Eq. 5 will contain

(14]

L-values and Fourier coefficients of the weight 12 cusp form* A.
However, the linear combination of these terms appearing
in Eq. 14 vanishes. To see this, let L*(s) := L*(A,s) and
L(s) := L(A, s5) and note that (A, A) is a common denominator
in all terms, and thus, we can omit it from the consideration.

71,7 . . . .
Moreover, the Z;, %) terms will vanish as they simply contribute
to the cases when 717, = 0. Thus, it suffices to consider the sum

4032 22 45D(2,2,3) + 71628 P 7 .
for
D(r1, . d) = (1) 3 1= Qdtntn+2)
><L*(d+1)L*(d+yl+1)<2‘l+;+rz>

fFe.g., inthefirstcase,ry =r, =2,d =3,andthus,k =2d +ry +r, +2=12.
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da 135 5 30375 42525
an = ——F, = , an —_ e —_—
’ 27 T T8 & 83210
(6, section 2.14). After a substitution, it suffices to check that
382725L(2)L(4) 1148175L(4)L(6) = 3189375L(2)L(6)
53248713 26624717 53248715

vanishes, which can be done with the help of ref. 24.

We note that the cuspidal contribution to Eq. 14 also vanishes
when » = 7 and » = 9 confirming physical heuristics. In fact,
in ref. 5, the authors found that for higher-order terms in the
1/N expansion for the integrated correlator, the cuspidal terms
cancel as in ref. 14, implying that these terms can be represented
as lattice sums. This result further suggests that there should be a
more optimal choice than generalized Eisenstein series as a basis
for such computations.

2. Jacobi Functions with Integer Parameters

We note that in the case @, f,d € Zs¢, the Jacobi functions

Qf;’m (x) can be expressed in elementary terms and have the
following characterization (compare with (25, equation 5.7)).

Proposition 1. Leta, f, d € Z>q and letPé({a’ﬂ) denote the Jacobi

polynomial defined in ref. 13, section 4.1. Forx € R~ {—1, 1}, we
have

Q) =

ﬂ (a.p) x+1 R(x)
2 (x)log‘x—l’+(x—l)"‘(x-l—l)/}’
(15]

where R € Qx| is a polynomial of degree d + a + p — 1. Moreover,
let F be any function of the form

R(s)
(x = 1)*(x+1)7
with P,R € Rx|, and P of degree < d such that F(x) =
O(x~4=2=P=1Y, x — 00; then, F must be a multiple 0fQ¢(la’ﬂ) (x)

(16]

Proof: The first claim follows from the integral representation

(13, equation 4.61.4)
(x=1)“(x+1)""
2
/1 (1= %1 + )P PSP (1) dr
X

1 (x—1) '

Q) =

and writing fllp)(:_d’ = px) 7113% _ fill%dt-

From Eq. 6, it immediately follows that

Qia,ﬂ)(x) ~ Cx—d—a—p-1 i ¥ — 00 [17]
for some C # 0, so Qia’ﬂ) (x) = O(x 4~ F=1) as x — oo.
Now assume that F is given by Eq. 16 and satisfies F(x) =

O(x~%=*P=1). Any polynomial can be written as a linear
combination of Jacobi polynomials, thus

Plx) =Y 6P (x) [18]

for some ¢; € R. Consider

pnas.org
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where ¢; are as in Eq. 18. Then, on the one hand, Egs. 15,
16, and 18 imply that G(x) is_of the form (x — 1)7*
(x+1)7PR(x) for some polynomial R, and on the other hand, the
assumption that F(x) = O(x~4=*=F=1) and Eq. 17 imply that
G(x) = O(x=%#=1). This can only happen if R vanishes, and
hence G = 0. Since Qj(a’ﬁ) (x) ~ Cx 779~ for some C; # 0
and F(x) = O(x~?77P=1), we also see that ¢; = 0 for j =
0,...,d — 1, and thus, F is a multiple of Qfla’ﬂ), as claimed. OJ

In view of the above characterization, the polynomial R

from Eq. 15 can be computed from the following identity for
formal Laurent series in X

(1—X"He(1+x1)
2
=RX N+ 0X).

B ()

We note that each Jacobi function can be represented in terms
of the hypergeometric function 3 F;. More precisely, from ref. 13,
equation 4.61.5 and the symmetry

Q) = (1P (o),
we obtain
214948 (4 4 a)l(d + p)!
(2d +a+ f+ 1)!(x — 1)%(x + 1)4+5+1
szl(d+ﬂ+ 1,d+ 1;2d+a+ﬂ+2;i))

14+ x
[19]

Q" (x) =

where in order to incorporate the extension of Qﬁ(l,a’ﬂ) (x) tox €
(=1,1), we set for t > 1

1
21 (a bieit) = E(ZFI (a, b; c; ¢ + i0) + 2 Fy (4, b; c; ¢ — i0)) .
(20]

We will use this definition of Qﬂ(la’ﬂ) (x) in terms of hyperge-
ometric functions to compute Mellin transforms of Whittaker
functions in the following section. Thus, we additionally need
some results on the Mellin transform of the hypergeometric
function F;. Specifically, by (26, p. 314, equation 2.21.1.2),

/”F@W@W@—@FQ—@
0 I'(e)
=T$Cs—(a+b—c)(a—s5(b—ys),

2Fy(a, b c;1 — x)x

[21]

from which one also gets
/'OO I(a)T(6)T(c — a)(c — b)

0 I'(c)

=cos(ms)[()[(s—(a+ b—c))T(a—s)['(b—5),
(22]

2F1(a byc; 1+ x)x‘_ldx

where we define 2 F1 (4, b; c; t) for t > 1 as in Eq. 20.

PNAS 2024 Vol. 121 No. 44 e2322320121

3. Proof of the Main Result

Let Wi, denote Whittaker’s W-functions as in ref. 27,
Eq. 13.14.1 or (28, p. 386). It will be convenient to extend
Wi u to a function defined on R \ {0} as follows

I'(1/2+ p —sgn(y)x)
T(1/2+p —x)

WK,M()/) = VVSgn(}/)K,ﬂ('}")’ J 7é 0.

(23]

Next, we will need two results about Wy ,,.
Lemma 1. Fork, u > 0 and Re(s) > u — 1/2 we have

C(s—pu+1/2)T(s+u+1/2)
I's—x+1)

o
/ W u(2)e /¢ Vs =
0

(24]
and for k > Re(s) > u — 1/2 we have

o
/ Wi (—2)e /2L dr
0

= o ) G 12T — ).

r
[25]
Proof: The first equation is a special case of (28, section 6.9
and Eq. 8). The second equation is (28, section 6.9 and Eq. 7)
together with the functional equation for the gamma function.

[Note that there is a typo in ref. 28, section 6.9 and Eq. 7,
compare with (27, Eq. 13.23.5).] O

Lemma 2. Let ky, ky, my, my € L satisfy m; < k; and my +
my < k1 + ky, and set
L:=ki+ky—m—my—1 and q = k1 +bky+my+my—1.

Then, for any a, b € R such that a + b = 1 and ab # 0, one has

o0
/0 Wiy, (@9) Wiy oy (y)e /2511 02y

2(=1)kmglel a1 12 12 Q) (.

Proof: We first consider the case 2 € (0, 1) and define /; (x) for
x > 0 by

o0
e /o Wiy (20) Wiy iy ()~ 1T/ 1 H2=2

To prove the lemma in this case, it suffices to show that

Q§2m1,2m2) (}_XC)

[1(x):2(_1)k1_m1£!q! ﬂ(1+x)q+1

(26]

Using [24] and (28, section 6.1 and Eq. 13) we obtain that
for 2my < Re(s) < k1 + ky + my — my, the Mellin transform of
I; (x) is equal to
(s —=2m)()I+2m —s+ 1)(g—s5s+1)

T(s—m — k1 + 1/2)0(ky +m; —s+1/2)

= %COS (7[(: — /el — ml))r(s — 2m1)F(S)X

M(1,s5) =

xT(€+2m —s+1)(g—s+1).

https://doi.org/10.1073/pnas.2322320121

50f 8



Downloaded from https://www.pnas.org by 134.206.229.134 on May 29, 2025 from | P address 134.206.229.134.

With the help of Eq. 19, we write

ngzml,zmz) ( {%C )
(x4 1)7t1
I'(g—2m+ 1) (q—2m +1)
20(2ky + 24)
X 2F1 (g —2my+ 1,9+ 1,2k 4+ 2ky; 1 +x) . [27]

G-

=C-

By Eq. 22, the Mellin transform of Eq. 27 is equal to

cos(zs)I'(s)[ (s — 2my)
2L(+1)(g+1)

xT(=s+qg—2m+1)I'(—s+g+1).

1"

In order for the expression above to coincide with M(1}, s),
we must require that

C— 2L+ 1)T (g + 1) cos (w(—k1 — my +5))
1= .

7 cos(7s)
Thus, we obtain for k1 + m; € 7Z that 7} (x) is equal to

(2m1,2m2) (l;x)
1+4+x

%1" L+ 1) (g+1)cos(z(ky +m)) W

If¢, g € Noand k1 +m; = ky—m; mod 2, we get exactly [26].
It remains to prove the result for 2 < 0 (the case & < 0 follows
by symmetry). For x > 0, we define /> (x) as

00
fO el ‘V/@bml(_x}’) Wiy, my O’)g_(l_x)y/z}’lirkz_zd}”

and again using Lemma 1 and (28, section 6.1 and Eq. 13), we
calculate M (1, 5) is equal to

cos(z(ky — my))
b3
re+2m —s+1)I'(g—s+1)
[(ky +m —s+1/2)

L(s = 2m)C(s)L (k1 +m1 — s+ 1/2)

with the same fundamental strip as before. With the help of
Eq. 19, we write

QZ(Zml,Zmz) (m)

T S b 24
R
C I'(g—2m+ 1) (q—2m +1) (28]
= 2;

2T(2ky + 2k)
X 2F1(g—2m+ 1,9+ 1;2(k + k) ;1 —x).

By Eq. 21, the Mellin transform of Eq. 28 is equal to

L (s=2m)T(—s+q—2m+1)T'(—s+g+1)

€ A+ 1T (g+1)

In order for the expression above to coincide with M (1, s),
we must require that

G = %COS(H(/Q —m))T+1)T(g+1).
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Thus, L (x) is equal to

(2m1.2m2) /14w
2 < (=)
;COS(TL'(/Q —m))T(L+1)T(g+1) BT
If we assume k1 — m; € Z and £, g € Ny, then we obtain
2my,2m x
th I 2)(i)

1—x

(1l —x)att 7

which is easily seen to imply the claim of the lemma for
a < 0. O

L(x) = 2(=1)7 01! [29]

Finally, we recall the holomorphic projection lemma from
ref. 25 (we restrict to the case of SL;(Z)).

Lemma 3 [Holomorphic Projection Lemma]. Ler @ be a
nonholomorphic modular form of weight k > 2 for SLy(Z) with a
Fourier expansion ®(z) = Y, 7 a,,(y)e¥™™, and suppose that
for some € > 0 we have ®(z) = O(y~¢) as z — ico. Define

(4am)tt o ~2mmy
m/o élm()/)(,’ 2 y)//e Zd)/, m>0.
2rimz

Then, the function ®(z) = Y. _oame is a holomorphic
cusp form of weight k for SLo(Z) and moreover (f @) = {f. @) for
all f € Sp(SL2(Z)).

Proof of Theorem 1: With our notation for W, , the completed
nonholomorphic Eisenstein series £,(z,5), # € Zx, has the
following Fourier expansion [cf. (29, p. 210), (30, section 3)]

Ay =

62—1(n)

Eik/e(z, 5) = crs(y) + (-1)’6 ZTW/e,HI/Z(47I”}/)€2”iW.
n#0 "
Here,
0u(s)y’ + 041 — 9!~
) fors > 1/2,
Ch,s = 3 r(k+1
% (v (k+ 1) + 2y +log(y/m)) /3
fors=1/2,

where 6,(s) = 7T'(s+ £){ (25), w(2) is the digamma function,
and y denotes the Euler—Mascheroni constant. Denote m; = 7;/2
and let

D(z) = B3, (zm1 + 1/2) By (zmy + 1/2)y7172,

where we choose the integers 41 and 4, to satisfy 2k; + 2k, =
k= r +rn+2d+2and k; > m;. Expanding the product
of the Fourier expansions of the two Eisenstein series we see
that the coefficients of the holomorphic projection of ® can be

calculated as
ay = E Any,ny >

n +ny=n

where for 717, # 0 we have
(4zn)! (=) TR0, (m)oy, (m)
(w=2)! | |12 py 2t 1/2

oo
X/(; Wiy g (4771y) Wiy, (dmay) e~ 270y 1022

= 2(=1)R " (4n) 1 u o, (m)o, (n2)

Ll’!(ﬂ’-i-r] —l—rz)! (rl,r2)<”2 —nl)
x(2d + 11 + 1)! n

Anyny =
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by Lemma 2. The boundary terms can be calculated from
Lemma 1 as

ano = (—1)162 ((4:?;' |n¢|721(—:41)/2
x /OOO Wiy (47019 1 2 (9) e 72y F1 TR 24,
[30]
that is,
f 223 cos (mm2)
ano = (—1)% =] n e, (n)

where 7, # 0 and, similarly,

k_
h 2kz2 7! cos (wm1) 4

=)
x ("¢ (T )T @+ DT (5= +m)
+C(—71)F(—71)F(/§ +my — mz)

xF(rl+rz+d+l)> 31]

ap,, = (—1) n Grz( )

when 71 # 0. When r = 0, 4,0 can be obtained by taking a
limit 7, — 0 in Eq. 30 due to the absolute convergence of the
respective integrals:

k k
(—1)e2t 22 (= om )T (S 4 m)

0 = (k—2)!
X (Hija—m—1 + Hejatm -1 — log(4n’n))oy, (n),
where Hy = w(d + 1) +y and

4atmHl gdtm cos (mmy) =" o4 (n)

a0,n =

(2(d 4 m))!
x (D(d 4+ 1)*#*™ ¢ (1) T (2my)
(=) T (=) T (d + 2m1 + 1))

Similarly, when 1 = 0, 4, can be obtained by taking a limit
r1 — 0in Eq. 31. When r; = r, = 0, we obtain

224N (—1) 7T (d + 1)
(2d)!
x (2Hy — log (47%n)) oo (n).

By the result of Diamantis and O’Sullivan (31, Prop. 2.1), for
any normalized Hecke eigenform f € S;(SL2(Z)) we have

(@) =2(—1)r* L (fd + )*(fra+d + 1)
_ (-

a0,n = an0 —

from which, in combination with the above formulas for a,, ,,,
we recover [7].
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1)k2+m2—m1_d_17[k[4*(]€d +DLEn+d+1),

Proof of Corollary 1: We recall n > 0. We use the substitution
n = 5(1 —x), my = 5(1 + x) so that @(n1, n2) becomes
a function of 7 and x, call it ¢,(x). The summation in ¢,

containing logarithms becomes

log| an L P,2(x) + log |x — 1|(Py2(x) + Pu3(x)),

where P, (x) and P, 3(x) are polynomials in x with the degree at
most 4. The growth condition ¢@(n1, n—n1) = O(nl_d_r1 2l
forn; — Fooand fixed nimplies that P, » (x)+ P, 3 (x) vanishes.
After substitution, we get

Pyi(x)
(1 —x)1(1+x)

@u(x) = + Py (x) log | X,

where P, 1 (x) is a polynomial in x of degree at most 71 + 7 +
d — 1. Thus, by Proposition 1, the function @,(x) (considered as
a function of x while keeping 7 fixed) is a constant multiple of

Qa([n,rz)( ). We recall that the coefficient of erl )

front of log 7] is equal to

(_1)r1+1 P(rm) n — m
2 4 ny + np

(=) G (=1 (d A+ )N+ )
2(ny+mnp)? s d — ) (s+ )i (d — s+ )

”2*”1

n1+n2) in

s=0

Changing the variables 7 = 7 — n;, we obtain a polynomial
in “L with leading coefficient

()t &

4 (d+71)!(d+72)!
Z;_Usﬂd—WQ+mﬂw—:+mﬂ

_ (=D (gt 2d)! <m>d
- 2 A +n+d)!' \n

Comparing the leading coefficients of @,(x) and Q;rl’VZ)(x)

we see that

r1+d+1C dzd'(rl + 2+ d 1, ’2

(=1) (r1+72—|—2d'Qd

Pn(x) =

The expression above also fixes A;, B; Cj, and D;. O

Al ]’
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