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Example: classification of solutions of the Chazy equation

Chazy equation:

f ′′′ + 2ff ′′ − 3(f ′)2 = 0.

SL(2,R) symmetry:

z̃ =
az + b

cz + d
, f̃ = (cz + d)2f + 12c(cτ + d).

Generic solution:

f(z) = E2(iz/π) = 1− 24

∞∑
n=1

σ1(n)e
−2nz ,

whereE2 is the Eisenstein series, which is a quasi-modular form of weight 2 on SL(2,Z) and σ1(n)

denotes the sum of all positive divisors of n. This solution belongs to the open three-dimensional

SL(2,R)-orbit.

There are also two non-generic orbits of dimensions two and one,

f(z) =
1

(cz − a)2
+

6c

cz − a
and f(z) =

6c

cz − a
,

the orbits of constant solutions f(z) = 1 and f(z) = 0, respectively.
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General problem: degenerations of modular forms

Every modular form f (classical, Jacobi, Siegel, Picard, ...) on a discrete subgroup Γ of a Lie groupG

solves a nonlinear PDE system Σ such that:

• system Σ is involutive (compatible);

• system Σ is of finite type (has finite-dimensional solution space);

• system Σ isG-invariant, furthermore, the Lie groupG acts on the solution space of Σ locally

transitively with an open orbit (thus, the dimension of the solution space of Σ equals dimG);

• the modular form f is a generic solution of system Σ (f belongs to the open orbit), in particular,

solution f has discrete stabiliser Γ;

• system Σ is expressible via differential invariants of a suitable action ofG.

In the case of classical modular forms f , we have: Γ = SL(2,Z),G = SL(2,R), system Σ is a

third-order nonlinear SL(2,R)-invariant ODE for f .

General problem: classify solutions of Σ corresponding to non-generic orbits.

Non-generic solutions will automatically have continuous symmetries fromG and can be obtained using

the well-developed machinery of symmetry analysis of differential equations.
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3D integrable Lagrangians
∫
f(vx1 , vx2 , vx3) dx: examples

Euler-Lagrange equation:

(fvx1
)x1 + (fvx2

)x2 + (fvx3
)x3 = 0.

Example 1. Linear wave equation:

vx1x1 − vx2x2 − vx3x3 = 0, f = v2x1
− v2x2

− v2x3
.

Example 2. Dispersionless Kadomtsev-Petviashvili equation:

vx1x3 − vx1vx1x1 − vx2x2 = 0, f = vx1vx2 −
1

3
v3x1

− v2x2
.

Example 3. Boyer-Finley equation:

vx1x1 + vx2x2 − evx3 vx3x3 = 0, f = v2x1
+ v2x2

− 2evx3 .

Example 4. Equation

vx1vx2x3 + vx2vx1x3 + vx3vx1x2 = 0, f = vx1vx2vx3 .
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Modular example

Example 5. Lagrangian density f = vx1vx2g(vx3 ) generates the Euler-Lagrange equation

(vx2g(vx3 ))x1
+ (vx1g(vx3 ))x2

+
(
vx1vx2g

′(vx3 )
)
x3

= 0.

The requirement of integrability leads to a fourth-order ODE for g(z):

g′′′′(g2g′′ − 2g(g′)2)− 9(g′)2(g′′)2 + 2gg′g′′g′′′ + 8(g′)3g′′′ − g2(g′′′)2 = 0.

The generic solution g(z) of this ODE can be represented in the form

g(z) =
∑

(k,l)∈Z2

e2πi(k2+kl+l2)z = 1 + 6q + 6q3 + 6q4 + 12q4 + ....

where q = e2πiz . It is a modular form of weight one and level three (with a character), known as the

Eisenstein seriesE1,3(z). The generic solution g(z) also satisfies a third-order ODE,

g2g′′′2 − 6g′(3gg′′ − 4g′2)g′′′ + 18gg′′3 − (g6 + 27g′2)g′′2 + 4g5g′2g′′ − 4g4g′4 = 0;

note that the fourth-order ODE is a differential consequence of the third-order ODE.

The function g(z) = z is a non-generic solution of the above fourth-order ODE; it corresponds to the

Lagrangian density f = vx1vx2vx3 . Note that g(z) = z does not satisfy the third-order ODE.
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Integrable Lagrangians: summary of known results

• There exist three approaches to integrability of 3D Euler-Lagrange equations of the above type

(method of hydrodynamic reductions, method of dispersionless Lax pairs, method of integrable

conformal geometry), leading to the same integrability conditions and classification results.

• Integrability conditions for a Lagrangian density f form a fourth-order involutive PDE system Σ

expressing all fourth-order partial derivatives of f in terms of lower-order derivatives. The system of

integrability conditions is invariant under a 20-dimensional Lie groupG that acts on the

20-dimensional parameter space of integrable Lagrangians with an open orbit.

• Master-Lagrangian corresponding to the open orbit is expressible via (vector-valued) Picard modular

forms on a discrete subgroup Γ ofG.
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Integrability conditions

Integrability conditions form a PDE system Σ for the Lagrangian density f(vx1 , vx2 , vx3 ):

d4f = d3f
dH

H
+

3

H
det(dM),

where d3f and d4f are the symmetric differentials of f ; the HessianH and the 4× 4 matrixM are

defined as

H = det


fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

 , M =


0 fx fy fz

fx fxx fxy fxz

fy fxy fyy fyz

fz fxz fyz fzz

 .

Here (x, y, z) = (vx1 , vx2 , vx3 ). System Σ is in involution and its solution space is 20-dimensional.

The 20-dimensional symmetry groupG of system Σ consists of projective transformations of x, y, z and

linear transformations of f :

x̃ =
l1(x, y, z)

l0(x, y, z)
, ỹ =

l2(x, y, z)

l0(x, y, z)
, z̃ =

l3(x, y, z)

l0(x, y, z)
, f̃ =

f

l0(x, y, z)
,

f̃ = ϵf + αx+ βy + γz + δ.

Generic Lagrangian density f?
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Weierstrass sigma function σ and integers Ck

Let σ be the Weierstrass sigma function (equianharmonic case g2 = 0). It solves the ODE

σσ′′′′ − 4σ′σ′′′ + 3σ′′2 = 0

and possesses a power series expansion

σ(z) =
∑
k≥0

Ck
z6k+1

(6k + 1)!

where Ck are certain integers:

1, 1, −6, −552, 18600, −9831240, . . . .

These integers will feature in the formulas for the generic Lagrangian density f .

9



Lagrangian density f = vx1vx2 g(vx3)

Euler-Lagrange equation:

(vx2g(vx3 ))x1
+ (vx1g(vx3 ))x2

+
(
vx1vx2g

′(vx3 )
)
x3

= 0.

Integrability condition:

g′′′′(g2g′′ − 2g(g′)2)− 9(g′)2(g′′)2 + 2gg′g′′g′′′ + 8(g′)3g′′′ − g2(g′′′)2 = 0.

Below we give three equivalent representations of the generic g:

Theta representation;

Power series representation;

Parametric representation.
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Auxiliary hypergeometric equation

Consider an auxiliary hypergeometric equation,

u(1− u)huu + (1− 2u)hu −
2

9
h = 0.

The geometry behind this equation is a one-parameter family of genus 2 trigonal curves,

r3 = t(t− 1)(t− u)2,

supplied with the holomorphic differential ω = dt/r. The corresponding periods, h =
∫ b
a ω where

a, b ∈ {0, 1,∞, u}, form a 2-dimensional vector space and satisfy the above (Picard-Fuchs)

hypergeometric equation.
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Generic g(z)
Generic solution of the ODE

g′′′′(g2g′′ − 2g(g′)2)− 9(g′)2(g′′)2 + 2gg′g′′g′′′ + 8(g′)3g′′′ − g2(g′′′)2 = 0

has three equivalent representations.

1. Theta representation:

g(z) =
∑

(k,l)∈Z2

e2πi(k2+kl+l2)z = 1 + 6q + 6q3 + 6q4 + 12q4 + ...,

which is the Eisenstein seriesE1,3(z).

2. Power series:

g(z) =
∑
k≥0

C2
k

z6k+1

(6k + 1)!

where the integers Ck appear in the power series expansion of the Weierstrass σ-function.

3. Parametric form:

z =
h1(u)

h2(u)
, g = h2(u)

where h1, h2 are two linearly independent solutions of the auxiliary hypergeometric equation.
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Generic Lagrangian density f(x, y, z)

Generic Lagrangian density possesses, among others, a remarkable power series representation,

f(x, y, z) =
∑

i,j,k≥0

CiCjCkCi+j+k
x6i+1

(6i+ 1)!

y6j+1

(6j + 1)!

z6k+1

(6k + 1)!
,

where the integers Ck appear in the power series expansion of the Weierstrass σ-function.

Let us now turn to non-generic Lagrangians.
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Classification of non-generic Lagrangian densities f
Orbit representative (12 cases) Orbit dimension

f = f(vx1 , vx2 , vx3 ) 20

f = ux1g(vx2 , vx3 ) 19

f = vx1vx3 − 2σ(vx1 )e
vx2 18

f = vx1vx2g(vx3 ) 18

f = vx1vx2vx3 17

f = vx1vx3 − 2vx1e
vx2 17

f = vx1vx3 − 2vx1v
2
x2

− 2v7x1
17

f = vx1vx3 − 2vx1v
2
x2

16

f = vx1vx3 − 2evx2 16

f = vx1vx3 − 2v2x2
− 2v2x1

vx2 + 1
2
v4x1

16

f = vx1vx3 − v2x2
− 1

3
v3x3

15

f = v2x1
− v2x2

− v2x3
13

(Possibly incomplete)
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Dispersionless Lax pairs

We say that a pair of Hamilton-Jacobi type equations for an auxiliary function S,

Sx3 = f(Sx1 , vx1 , vx2 , vx3 ), Sx2 = g(Sx1 , vx1 , vx2 , vx3 ),

constitutes a dispersionless Lax representation of a given equation for v iff the compatibility condition

Sx3x2 = Sx2x3 is equivalent to this equation. Lax pairs of this form have been introduced by

Zakharov as dispersionless limits of Lax pairs of integrable soliton equations.

Example. The dispersionless Kadomtsev-Petviashvili equation,

vx1x3 − vx1vx1x1 − vx2x2 = 0, f = vx1vx2 −
1

3
v3x1

− v2x2
,

possesses the Lax pair

Sx3 =
1

3
S3
x1

+ vx1Sx + vx2 , Sx2 =
1

2
S2
x1

+ vx1 .
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Parametric Lax pairs

In some cases it is more convenient to work with parametric Lax pairs,

Sx1 = f(p, vx1 , vx2 , vx3 ), Sx2 = g(p, vx1 , vx2 , vx3 ), Sx3 = h(p, vx1 , vx2 , vx3 ),

where p is a parameter. In the latter case, the compatibility condition takes the form

fp(gx3 − hx2 ) + gp(hx1 − fx3 ) + hp(fx2 − gx1 ) = 0.

Parametric Lax pairs have appeared in the context of the universal Whitham hierarchy.

Example. The equation

vx1vx2x3 + vx2vx1x3 + vx3vx1x2 = 0, f = vx1vx2vx3 ,

possesses the parametric Lax pair

Sx1

vx1

= ζ(p),
Sx2

vx2

= ζ(p) +
℘′(p) + λ

2℘(p)
,

Sx3

vx3

= ζ(p) +
℘′(p)− λ

2℘(p)
,

where ζ and ℘ are the Weierstrass functions, ζ′ = −℘, ℘′2 = 4℘3 + λ2.
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Lax pair for the Lagrangian density f = vx1vx2 g(vx3)
Euler-Lagrange equation:

(vx2g(vx3 ))x1
+ (vx1g(vx3 ))x2

+
(
vx1vx2g

′(vx3 )
)
x3

= 0.

Integrability condition:

g′′′′(g2g′′ − 2g(g′)2)− 9(g′)2(g′′)2 + 2gg′g′′g′′′ + 8(g′)3g′′′ − g2(g′′′)2 = 0.

Parametric Lax pair:

Sx1 = vx1φ(p, vx3 ), Sx2 = vx2ψ(p, vx3 ), St = η(p, vx3 ).

System for φ,ψ, η:
ψpηz − ψzηp − φψp = g′

g
(φ− ψ)ηp,

ηpφz − ηzφp + ψφp = g′

g
(φ− ψ)ηp,

φpψz − φzψp = g′′

2g
(φ− ψ)ηp.

Particular solution:

φ = α1(z)η, ψ = α2(z)η, α1,2 =
1

6

(
−
(gg′′ − 2g′2)′

gg′′ − 2g′2
± g2

)
.

Linear (non-generic) Lax pair:

Sx1 = α1(vx3 ) vx1Sx3 , Sx2 = α2(vx3 ) vx2Sx3 .
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