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Example: classification of solutions of the Chazy equation

Chazy equation:
f/// _|_ fo// o 3(f/)2 — O
SL(2,R) symmetry:

az + b
cz+d’

f = (cz + d)2f + 12¢(eT + d).

z =

Generic solution:
©.@)
f(2) = Ea(iz/m) =1—24>  o1(n)e” "7,
n=1
where FJs is the Eisenstein series, which is a quasi-modular form of weight 2 on SL(2,7Z) and o1 (n)

denotes the sum of all positive divisors of . This solution belongs to the open three-dimensional
SL(2,R)-orbit.
There are also two non-generic orbits of dimensions two and one,
1 6¢ 6¢c
f(z) = + and  f(z) =

(cz—a)? cz—a cz—a’

the orbits of constant solutions f(z) = 1 and f(z) = 0, respectively.



General problem: degenerations of modular forms

Every modular form f (classical, Jacobi, Siegel, Picard, ...) on a discrete subgroup I of a Lie group G

solves a nonlinear PDE system >J such that:
e system X is involutive (compatible);
e system X is of finite type (has finite-dimensional solution space);

e system X is Gi-invariant, furthermore, the Lie group (G acts on the solution space of > locally

transitively with an open orbit (thus, the dimension of the solution space of . equals dim G);

e the modular form f is a generic solution of system X2 (f belongs to the open orbit), in particular,

solution f has discrete stabiliser I'’;
e system X is expressible via differential invariants of a suitable action of (5.

In the case of classical modular forms f, we have: I' = SL(2,7Z), G = SL(2,R), system Y is a
third-order nonlinear SL(2, R)-invariant ODE for f.

General problem: classify solutions of X2 corresponding to non-generic orbits.

Non-generic solutions will automatically have continuous symmetries from (G and can be obtained using

the well-developed machinery of symmetry analysis of differential equations.



3D integrable Lagrangians | f(vy,, Vs, , Uz, ) dz: examples

Euler-Lagrange equation:

(f’Uazl )ml ‘|‘ (ffva )932 ‘|‘ (f’U:JcS )mg — O

Example 1. Linear wave equation:
2 2 2

Example 2. Dispersionless Kadomtsev-Petviashvili equation:

—0 _ 1 3 2
Vxixg3 — V1 Vxixz1 — Vxgoxg — Y, f = Vg1 Vxy — g’le — UCI}Q‘
Example 3. Boyer-Finley equation:
VUgixq T Vzgxg — € Vggzxz = Y, J= Veq Uzq € :
Example 4. Equation
Vgy Vaoas T VzoVzizg + VagVzizg = 0, f = V2, Vz50Vz5.



Modular example

Example 5. Lagrangian density f = Vzq fux2g(vm3) generates the Euler-Lagrange equation

(UCBQQ(U%’?,));“ + (U$1g(v$3))x2 + (UfL‘lvaQ/(va:s))m?) =0

The requirement of integrability leads to a fourth-order ODE for g(z):
g////(g2g// _ 29(9/)2) (g ) (g//)2 i 299/ 1 /// + 8( /)39/// _ 92(9///)2 —0
The generic solution g(z) of this ODE can be represented in the form

-r1.2 2
gz)= Y e ERANE — 1 4604 6¢% + 60" + 127 + ...
(k,1)eZ2

where ¢ = €?™Z |t is a modular form of weight one and level three (with a character), known as the
Eisenstein series E'1 3(z). The generic solution g(z) also satisfies a third-order ODE,

929///2 69/(3gg// . 49/2)9/// + 1899”3 ( i 279/2) 112 i 495 12 // 494 14 = 0;
note that the fourth-order ODE is a differential consequence of the third-order ODE.

The function g(z) = z is a non-generic solution of the above fourth-order ODE; it corresponds to the
Lagrangian density f = Vg4 Uz, Vzg . Note that g(z) — 2z does not satisfy the third-order ODE.



Integrable Lagrangians: summary of known results

® There exist three approaches to integrability of 3D Euler-Lagrange equations of the above type
(method of hydrodynamic reductions, method of dispersionless Lax pairs, method of integrable

conformal geometry), leading to the same integrability conditions and classification results.

e Integrability conditions for a Lagrangian density f form a fourth-order involutive PDE system X
expressing all fourth-order partial derivatives of f in terms of lower-order derivatives. The system of
integrability conditions is invariant under a 20-dimensional Lie group (G that acts on the
20-dimensional parameter space of integrable Lagrangians with an open orbit.

o Master-Lagrangian corresponding to the open orbit is expressible via (vector-valued) Picard modular
forms on a discrete subgroup I of 5.



Integrability conditions

Integrability conditions form a PDE system X for the Lagrangian density f(vg, , Vag, Vzs ):
dH 3
d*f = d>f— + —det(dM
f=d*r S+ det(aM),

where d3 f and d* f are the symmetric differentials of f; the Hessian H and the 4 X 4 matrix M are

defined as ( 0 f f / \
fra fa:y faz ) y z
x TT x Jaz
H = det fey  Jyy  Jyz ’ - ; ; ; y f

for  fys fos \ fo fos e S )

Here (z,y, 2) = (Vzy, Vs, Vzs ). System X is in involution and its solution space is 20-dimensional.
The 20-dimensional symmetry group G of system 2 consists of projective transformations of x, y, z and
linear transformations of f:

ll(a:)yaz) ~ ZQ(CI’J,’y,Z) ~ lg(a:,y,z) r f

lo(z,y,2)’ lo(z,y,2)’ lo(z,y,2)’ lo(z,y,2)’

f=¢€ef+ax+ By +vz+0.

T =

Generic Lagrangian density f?



Weierstrass sigma function ¢ and integers (',

Let o be the Weierstrass sigma function (equianharmonic case g2 = 0). It solves the ODE
O_O_//// o 40_10_/// _|_ 30_//2 — 0

and possesses a power series expansion

Z6k—|—1
o(z) =) ckm

k>0

where ('}, are certain integers:

1, 1, —6, —552, 18600, —9831240, ....

These integers will feature in the formulas for the generic Lagrangian density f.



Lagrangian density [ = v,, V., (V)

Euler-Lagrange equation:

(vwzg(vxg))ggl + (vifi1g(vﬂf3));¢2 + (UfL‘lvag/(vﬂC:s))mg = 0.

Integrability condition:
g////(g2g// . 2g(g/)2) _ 9(91)2(911)2 i 2gg/g//g/// + 8(91)39/// . gz(g///)Q — 0.
Below we give three equivalent representations of the generic g:

Theta representation;

Power series representation;

Parametric representation.
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Auxiliary hypergeometric equation

Consider an auxiliary hypergeometric equation,
2
The geometry behind this equation is a one-parameter family of genus 2 trigonal curves,

3 =t(t—1)(t —u)?,

supplied with the holomorphic differential w = dt/fr. The corresponding periods, h = f; w where
a,b e {O, 1, oo, u} form a 2-dimensional vector space and satisfy the above (Picard-Fuchs)

hypergeometric equation.
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Generic g(z)
Generic solution of the ODE
g////(929// . 29(9/)2) _ 9(9/)2(9,/)2 i 299,9//9,// + 8(9/)39/// . 92 (g///)2 —0

has three equivalent representations.

1. Theta representation:

g(z) _ Z 627r7;(k2—|—k:l—{—l2)z _ 1—|—6q—|—6q3—|—6q4—|—12q4—|—...,
(k,1)€Z2

which is the Eisenstein series E'1 3(z2).

2. Power series:
6k+1

9(x) = 2_ i (6K + 1)!

k>0

where the integers C', appear in the power series expansion of the Weierstrass o-function.

3. Parametric form: , ( )
1(w
z=—-=, g=ho(u

where h1, ho are two linearly independent solutions of the auxiliary hypergeometric equation.
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Generic Lagrangian density f(x, v, 2)

Generic Lagrangian density possesses, among others, a remarkable power series representation,

x6i—|—1 67+1 Z6k:—|—1

Y
(63 + 1)! (65 + 1)! (6k 4+ 1)!

flz,y,2) = > CiCiCiCitjtk
,7,k>0

where the integers C, appear in the power series expansion of the Weierstrass o-function.

Let us now turn to non-generic Lagrangians.
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Classification of non-generic Lagrangian densities |

Orbit representative (12 cases) Orbit dimension
f:f(UCU17UCL‘27v:L‘3) 20
f =1z, 9(Vay, vag) 19
f = vz, 005 — 20(vg, )72 18
f = V2, V259(Vas) 18
f = V2, VayVag 17
f = vz, Vz5 — 205, €772 17
[ = vz Vzg — 2%11{%2 — 2v9731 17
f =020z — 2vx1v§2 16
f = Vg gz — 2e"2 16
f =V Vg5 — 2v3232 — 21}31%2 + %vil 16
f =g vzg — 02, — 303, 15
f=vs —vi, —v3, 13

(Possibly incomplete)
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Dispersionless Lax pairs
We say that a pair of Hamilton-Jacobi type equations for an auxiliary function .S,

Szq = f(SivlvvwlavxzvvaS)v Szy = Q(Sivlavwlvvwzvvws):

constitutes a dispersionless Lax representation of a given equation for v iff the compatibility condition
Sx3x2 = S’xﬂ3 is equivalent to this equation. Lax pairs of this form have been introduced by

Zakharov as dispersionless limits of Lax pairs of integrable soliton equations.

Example. The dispersionless Kadomtsev-Petviashvili equation,

Vzyxg — Uy Vziz; — Vzgze = 0, f=0z,0z9 — ngl — Voo

possesses the Lax pair

1 1
SCU?) - 5521 + vz Sz + Vay, Sey = 5‘51%1 + Vg -
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Parametric Lax pairs

In some cases it is more convenient to work with parametric Lax pairs,
Sz = f(Py V21, Vag, Vag), Szy = g(P, Vay s Vao, Vaz )y Sez = h(P, Vay, Vag s Vay),
where p is a parameter. In the latter case, the compatibility condition takes the form

fp(gas — has) + gp(hay — frs3) + hp(foy — gzy) = 0.

Parametric Lax pairs have appeared in the context of the universal Whitham hierarchy.

Example. The equation
VzqVzozs T VzoVUxixs + VzgVzize — 0, f = Vg1 VxyVxy,

possesses the parametric Lax pair

S S o'(p)+X S
(), 22— (p)+ TR Sen ) FW A
Vzy Uz 20(p) Vzs 2p(p )
where ¢ and p are the Weierstrass functions, ¢’ = —gp, ©'? = 4p3 + \2.
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Lax pair for the Lagrangian density [ = Vgy Uzs g(%)

Euler-Lagrange equation:

(vaQ(Uﬂﬂg))ggl + (vw19(vf’33))m2 + (vmlv@g’(’vx?,))xg = 0.

Integrability condition:

g////(92g// . 29(9/)2) _ 9(9/)2(9//)2 i 2gg/g//g/// 4+ 8(g/)3g/// . 92(g///)2 — 0.

Parametric Lax pair:

Sz1 = Vo, (P, Vaz); Szy = Vany (P, Va3), St = n(p; vay)-

System for o, Y, n: /
YpNz — Yellp — PYp = gj(%" — Y)np,
Mppz — N=pp + Vp = L (¢ — ¢)np,

/7
ppz — pzthp = T (0 — )mp.
Particular solution:

1 (gg// _29/2)/ 0
= a1lz2)n, = a2(z)"n, « - 4 o :|: ’
¥ 1( )77 (& 2( )77 1,2 6 ( qq" _29/2 9
Linear (non-generic) Lax pair:
Szy = 041(”963) Vg Szs, Szy = 042(7)333) Vo Swg -

17



