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1. Itroduction: moduli of elliptic curves
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2. Modular varieties of orthogonal type

Let’s replace the imaginary axis y > 0 with the cone of future of an
integral hyperbolic lattice of signature (1, n − 1)

V+(L1,n−1) = {Y ∈ L1,n−1 ⊗ R, (Y ,Y ) > 0}+.

For the lattice L = U ⊕ L1,n−1 of signature (2, n), where U = ( 0 1
1 0 )

is the hyperbolic plane we define two realisations of the hermitian
homogeneous domain of type IV

Ω(L) = {[Z ] ∈ P(L⊗ C) : (Z ,Z ) = 0, (Z , Z̄ ) > 0}+ ∼=

D(L) = {X + iY ,X ∈ L1,n−1 ⊗ R,Y ∈ V+(L1,n−1)}.

The integral orthogonal group O+(L) of the lattice L acts on Ω(L).
For any lattice L of signature (2, n) and any subgroup of finite
index Γ < O+(L) we define the modular variety of dimension n

MΓ(L) = Γ \ Ω(L), dimCMΓ(L) = n.
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3. Modular varieties of orthogonal type

sign(L) = (2, 3) – the moduli spaces of polarised Abelian surfaces
(Gr-1993) and polarised Kummer surfaces.
sign(L) = (2, 19) – the moduli spaces of polarised K3 surfaces. The
last open question of A.Weil’s program (1956) on K3 surfaces
(GHS-2007).
sign(L) = (2, 20) – the moduli spaces of polarised hyperkähler
varieties of type Hilbn(K3) (GHS-2010, 2014).
sign(L) = (2, 21) – the moduli spaces of polarised hyperkähler
varieties of OG10 (GHS-2011).
sign(L) = (2, 10) – the moduli spaces of Enriques surfaces and of
polarised Enriques surfaces.
sign(L) = (2, 4) – the moduli spaces of polarised hyperkähler
varieties of type Kumn(A). There are no concrete results on the
geometric type of these moduli spaces.
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4. IHSVs

A K3 surface is the first example of irreducible holomorphic
symplectic varieties (or hyperkähler manifold).
Def. A compact Kähler manifold X is called an irreducible
holomorphic symplectic manifold (or hyperkähler manifold) if
1) X is simply-connected,
2) H0(X ,Ω2

X ) = H2,0(X ) = Cω where ω is an everywhere
nondegenerate holomorphic 2-form.
Beauville (1983) found two infinite series of IHSVs:
1) The length n Hilbert scheme Hilbn(S) for a K3 surface S , and
its deformations.
2) Let A be a 2-dimensional complex torus and consider
A[n+1] = Hilbn+1(A) (n ≥ 2) with the morphism of p : A[n+1] → A
given by addition. Then X = p−1(0) is an IHSV, called a
generalised Kummer variety. The deformation space of these
manifolds has dimension 5.
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5. Polarisations

A great deal of information on IHSVs is encoded in the cohomology
group H2(X ,Z) coming with the structure of an integral quadratic
lattice, the Beauville-Bogomolov form.
X ∼ K3[n]: H2(X ,Z) ∼= 3U ⊕ 2E8(−1)⊕ 〈−2(n − 1)〉.
X ∼ Kumn: H2(X ,Z) ∼= 3U ⊕ 〈−2(n + 1)〉 (n ≥ 2).
This isomorphism of the lattices is called marking of X .
A polarisation of X is a choice of ample line bundle L on X

c1(L) = h ∈ H2(X ,Z) ∼= LBB , h2 = 2d > 0.

We have (h, L) = div(h)Z. If div(h)=1, then the polarisation is
called split. For a split polarisation we get a lattice of signature
(2, 4) (for GKVs)

h⊥L = L2n+2,2d
∼= 2U ⊕ 〈−2(n + 1)〉 ⊕ 〈−2d〉.

A period of X is defined as follows

[ϕ(ω)] ∈ {[Z ] ∈ P(L2n+2,2d ⊗ C) : (Z ,Z ) = 0, (Z , Z̄ ) > 0}.

Valery Gritsenko Irrationality of the moduli spaces of polarised generalised Kummer varieties



6. The moduli spaceM(Kumn, hsplit2d )

Global Torelli Theorem is true for IHSVs (Verbitski, Markmann). In
our case we have an open immersion

M(Kumn, hsplit2d )→ Γ2n+2,2d \ Ω(L2n+2,2d).

The group Γ2n+2,2d is the group of Markmann’s parallel transport
operators acting on H2(X ,C). Montgardi (2018) proved that

Γ2n+2,2d = 〈S̃O
+

(L2n+2,2d), σ−(2n+2)〉,

where σ−(2n+2) is the reflection with respect to the generator of
〈−2(n + 1)〉 of the lattice L2n+2,2d of signature (2, 4). “Tilde”
means the stable orthogonal group acting trivially on the finite
discriminate group L∗2n+2,2d/L2n+2,2d of order (2n + 2) · 2d .

Valery Gritsenko Irrationality of the moduli spaces of polarised generalised Kummer varieties



7. Canonical differential forms onM(Kumn, hsplit2d )

Let F4(τ, z1, z2, ω) be a modular form of weight 4 on D(L2n+2,2d)
with respect to Γ2n+2,2d with character det : Γ2n+2,2d → {±1}.
Then F4(Z )dZ is a canonical differential form on an open part of
the modular variety. It can be continued on any its smooth
compactification if and only if F4(Z ) is a cusp form. Thus

H4,0
(
M̃Γ2n+2,2d

(L2n+2,2d)
)∼= S4(Γ2n+2,2d , det).

Problem: To construct at least one such cusp form.
I can do this using my model of the automorphic discriminant of
the moduli spaces of Enriques surfaces. This modular form belongs
to the kernel of the hyperbolic differential operator for U ⊕ D8(−1)
and its determines a gravitational correction of the FHSV-model.
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8. Irrationality of moduli spaces of GKVs

Main Theorem.M(Kumn, hsplit2d ) is irrational (i.e., its Kodaira
dimension is non-negative) if

2n + 2 = a2
1 + · · ·+ a2

k , k = 1, 3, 5, 7, ai 6= 0,

2d = b2
1 + . . . b2

8−k , bj 6= 0,

and the following cups condition is true

a1 · . . . · ak
gcd(a1, . . . , ak)

or
b1 · . . . · b8−k

gcd(b1, . . . , b8−k)
is even.
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9. Odd Jacobi theta-series and the automorphic discriminant

We take the odd Jacobi theta-series ϑ(τ, z) of characteristic 2∑
n∈Z

(
−4

n

)
qn

2/8rn/2 = −q1/8r−1/2
∏
n>1

(1−qn−1r)(1−qnr−1)(1−qn),

q = e2πi τ , r = e2πi z , τ ∈ H1, z ∈ C,

ϑ(τ,−z) = −ϑ(τ, z),
∂ ϑ(τ, z)

∂ z
|z=0 = 2πi η(τ)3.

We take the following model of the root lattice D8

D8 = {(a1, . . . , a8) ∈ Z8, a1 + · · ·+ a8 ∈ 2Z}.

Then ϑ(τ, z1) · . . . · ϑ(τ, z8) is a Jacobi form of weight 4 for the
root lattice D8. We can take its arithmetic lifting (Gr-1993)

Φ4(τ, z1, . . . , z8, ω) = G-Lift (ϑ(τ, z1) · . . . · ϑ(τ, z8)),

Φ4 ∈ M4(O+(2U ⊕ D8(−1)), χ2).
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10. Proof: a game with sums of non-zero squares

1) We embed the diagonal quadratic form 〈2n + 2〉 ⊕ 〈2d〉 in D8:

(u2n+2 = (a1, . . . , ak), v2d = (b1, . . . b8−k)) ∈ D8.

2) We get an embedding of the lattice L2n+2,2d → 2U ⊕ D8(−1)
and the corresponding homogeneous tube domains.
3) Using the pull-back of the modular form Φ4(τ, z1, . . . , z8, ω), we
get a Γ2n+2,2d -modular form of weight 4:

F4(τ, z1, z2, ω) =

= G-Lift
((
ϑ(a1z1) · . . . · ϑ(akz1)

)
·
(
ϑ(b1z2) · . . . · ϑ(b8−kz2)

))
.

4) F4 6= 0 if all ai and bj are non zero and F4 is a cusp form if the
cusp condition is satisfied.
5) F4(τ,−z1, z2, ω) = −F4(τ, z1, z2, ω), i.e. F4 is anti-invariant with
respect to the reflection σ2n+2, if k is odd.
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11. Arithmetic: sums of odd numbers of positive squares

Proposition.
1) 2d is a sum of 5 positive squares if 2d 6= 2, 4, 6, 10, 12, 18.
2) 2d is a sum of 7 positive squares if 2d 6= 2, 4, 6, 8, 14, 20.
Proof. 169 is a sum of 1, 2, 3, 4, 5, 6 and 7 positive squares.
169 = 132 = 122 + 52 = 122 + 42 + 32 = 112 + 3.42 =
122 +42 +2.22 +1 = 102 +2.52 +2.32 +1 = 112 +52 +42 +22 +3.1.
Then n − 169 = a2 + b2 + c2 + d2 and one has to check only
n < 169.
Conjecture. 2d is a sum of 3 positive squares if 2d does not
belong to

{4l ·m, m ≡ 7 mod 8} ∪ {4l · (1, 2, 5, 10, 13, 25, 37, 58, 85, 130)}.
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12. Particular series of irrational moduli spaces

• Let n = 2. Then 2n + 2 = 6 = 4 + 1 + 1. Therefore
M(Kum2, hsplit2d ) is irrational if 2d 6= 2, 4, 6, 10, 12, 18.
The same result we have for n = 5 (cusp), 6, 8, 10, . . . .
• The “dual” result for h6 (and also for 2d = 12, 14, 18, 22, . . . ):
M(Kumn, hsplit6 ) is irrational if n 6= 2, 4, 5, 8.
• Let n = 3. Then 2n + 2 = 8 = 22 + 4.1. Therefore
M(Kum3, hsplit2d ) is irrational if 2d = 6, 12, 14, 18, . . . is a sum of
three positive squares.
• Let n = 6. Then 2n + 2 = 14 = 9 + 4 + 1 = 3.4 + 2.1. Then
M(Kum6, hsplit2d ) is irrational if 2d 6= 2, 4, 10.
• The dual result:M(Kumn, hsplit14 ) is irrational if n 6= 4.
• Let 2d = 4 = 22. Then we get
M(Kumn, hsplit4 ) is irrational if n 6= 2, 3, 5, 6, 9.
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