Irrationality of the moduli spaces of polarised generalised Kummer varieties

Valery Gritsenko

Laboratoire Painlevé, University of Lille International Laboratory of Mirror Symmetry and Automorphic Forms, NRU HSE

Lille, 15.05.2024

1. Itroduction: moduli of elliptic curves

2. Modular varieties of orthogonal type

Let's replace the imaginary axis y > 0 with the cone of future of an integral hyperbolic lattice of signature (1, n - 1)

$$V^+(L_{1,n-1}) = \{Y \in L_{1,n-1} \otimes \mathbb{R}, \ (Y,Y) > 0\}^+$$

For the lattice $L = U \oplus L_{1,n-1}$ of signature (2, *n*), where $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the hyperbolic plane we define two realisations of the hermitian homogeneous domain of type IV

$$\Omega(L) = \{ [Z] \in \mathbb{P}(L \otimes \mathbb{C}) : (Z, Z) = 0, (Z, \overline{Z}) > 0 \}^+ \cong$$
$$\mathcal{D}(L) = \{ X + iY, X \in L_{1,n-1} \otimes \mathbb{R}, Y \in V^+(L_{1,n-1}) \}.$$

The integral orthogonal group $O^+(L)$ of the lattice L acts on $\Omega(L)$. For any lattice L of signature (2, n) and any subgroup of finite index $\Gamma < O^+(L)$ we define the modular variety of dimension n

$$\mathcal{M}_{\Gamma}(L) = \Gamma \setminus \Omega(L), \quad \dim_{\mathbb{C}} \mathcal{M}_{\Gamma}(L) = n.$$

sign(L) = (2,3) – the moduli spaces of polarised Abelian surfaces (Gr-1993) and polarised Kummer surfaces.

sign(L) = (2, 19) – the moduli spaces of polarised K3 surfaces. The last open question of A.Weil's program (1956) on K3 surfaces (GHS-2007).

sign(L) = (2, 20) – the moduli spaces of polarised hyperkähler varieties of type $Hilb^n(K3)$ (GHS-2010, 2014).

sign(L) = (2, 21) - the moduli spaces of polarised hyperkähler varieties of OG10 (GHS-2011).

sign(L) = (2, 10) – the moduli spaces of Enriques surfaces and of polarised Enriques surfaces.

sign(L) = (2, 4) – the moduli spaces of polarised hyperkähler varieties of type $Kum^n(A)$. There are no concrete results on the geometric type of these moduli spaces.

< ロ > (同 > (回 > (回 >))) 目 = (回 >) (u = (u

4. IHSVs

A **K3 surface** is the first example of irreducible holomorphic symplectic varieties (or hyperkähler manifold).

Def. A compact Kähler manifold X is called an irreducible holomorphic symplectic manifold (or **hyperkähler manifold**) if

1) X is simply-connected,

2) $H^0(X, \Omega_X^2) = H^{2,0}(X) = \mathbb{C}\omega$ where ω is an everywhere nondegenerate holomorphic 2-form.

Beauville (1983) found two infinite series of IHSVs:

1) The length *n* Hilbert scheme $Hilb^n(S)$ for a K3 surface S, and its deformations.

2) Let A be a 2-dimensional complex torus and consider $A^{[n+1]} = Hilb^{n+1}(A) \ (n \ge 2)$ with the morphism of $p : A^{[n+1]} \to A$ given by addition. Then $X = p^{-1}(0)$ is an IHSV, called a generalised Kummer variety. The deformation space of these manifolds has dimension 5.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5. Polarisations

A great deal of information on IHSVs is encoded in the cohomology group $H^2(X, \mathbb{Z})$ coming with the structure of an integral quadratic lattice, the Beauville-Bogomolov form.

$$X \sim \mathcal{K}3^{[n]}$$
: $H^2(X,\mathbb{Z}) \cong 3U \oplus 2E_8(-1) \oplus \langle -2(n-1) \rangle$.

 $X \sim \operatorname{Kum}^n$: $H^2(X,\mathbb{Z}) \cong 3U \oplus \langle -2(n+1) \rangle \ (n \geq 2).$

This isomorphism of the lattices is called **marking** of X.

A **polarisation** of X is a choice of ample line bundle \mathcal{L} on X

$$c_1(\mathcal{L}) = h \in H^2(X,\mathbb{Z}) \cong L_{BB}, \quad h^2 = 2d > 0.$$

We have $(h, L) = div(h)\mathbb{Z}$. If div(h)=1, then the polarisation is called **split**. For a split polarisation we get a lattice of signature (2, 4) (for GKVs)

$$h_L^{\perp} = L_{2n+2,2d} \cong 2U \oplus \langle -2(n+1) \rangle \oplus \langle -2d \rangle.$$

A period of X is defined as follows

$$[\varphi(\omega)] \in \{[Z] \in \mathbb{P}(L_{2n+2,2d} \otimes \mathbb{C}) : (Z,Z) = 0, (Z,\overline{Z}) > 0\}.$$

Global Torelli Theorem is true for IHSVs (Verbitski, Markmann). In our case we have an open immersion

$$\mathcal{M}(\operatorname{Kum}^n, h_{2d}^{\operatorname{split}}) \to \Gamma_{2n+2,2d} \setminus \Omega(L_{2n+2,2d}).$$

The group $\Gamma_{2n+2,2d}$ is the group of Markmann's parallel transport operators acting on $H^2(X, \mathbb{C})$. Montgardi (2018) proved that

$$\Gamma_{2n+2,2d} = \langle \widetilde{SO}^+(L_{2n+2,2d}), \sigma_{-(2n+2)} \rangle,$$

where $\sigma_{-(2n+2)}$ is the reflection with respect to the generator of $\langle -2(n+1) \rangle$ of the lattice $L_{2n+2,2d}$ of signature (2, 4). "Tilde" means the stable orthogonal group acting trivially on the finite discriminate group $L^*_{2n+2,2d}/L_{2n+2,2d}$ of order $(2n+2) \cdot 2d$.

伺下 イヨト イヨト

Let $F_4(\tau, z_1, z_2, \omega)$ be a modular form of weight 4 on $\mathcal{D}(L_{2n+2,2d})$ with respect to $\Gamma_{2n+2,2d}$ with character $det : \Gamma_{2n+2,2d} \rightarrow \{\pm 1\}$. Then $F_4(Z)dZ$ is a canonical differential form on an **open part** of the modular variety. It can be continued on any its smooth compactification if and only if $F_4(Z)$ is a cusp form. Thus

$$H^{4,0}\big(\widetilde{\mathcal{M}}_{\Gamma_{2n+2,2d}}(L_{2n+2,2d})\big)\cong S_4(\Gamma_{2n+2,2d},det).$$

Problem: To construct at least one such cusp form.

I can do this using my model of the **automorphic discriminant** of the moduli spaces of Enriques surfaces. This modular form belongs to the kernel of the hyperbolic differential operator for $U \oplus D_8(-1)$ and its determines a gravitational correction of the FHSV-model.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main Theorem. $\mathcal{M}(Kum^n, h_{2d}^{split})$ is irrational (i.e., its Kodaira dimension is non-negative) if

$$2n + 2 = a_1^2 + \dots + a_k^2, \ k = 1, 3, 5, 7, \ a_i \neq 0,$$

$$2d = b_1^2 + \dots + b_{8-k}^2, \ b_j \neq 0,$$

and the following cups condition is true

$$rac{a_1\cdot\ldots\cdot a_k}{\gcd(a_1,\ldots,a_k)}$$
 or $rac{b_1\cdot\ldots\cdot b_{8-k}}{\gcd(b_1,\ldots,b_{8-k})}$ is even.

9. Odd Jacobi theta-series and the automorphic discriminant

We take the odd Jacobi theta-series $\vartheta(au,z)$ of characteristic 2

$$\sum_{n\in\mathbb{Z}}\left(\frac{-4}{n}\right)q^{n^2/8}r^{n/2}=-q^{1/8}r^{-1/2}\prod_{n\geq 1}\left(1-q^{n-1}r\right)\left(1-q^nr^{-1}\right)(1-q^n),$$

$$egin{aligned} q &= e^{2\pi i\, au}, \quad r = e^{2\pi i\, au}, \quad au \in \mathbb{H}_1, \quad z \in \mathbb{C}, \ artheta(au, -z) &= -artheta(au, z), \qquad rac{\partial\,artheta(au, z)}{\partial\,z}|_{z=0} &= 2\pi i\,\eta(au)^3. \end{aligned}$$

We take the following model of the root lattice D_8

$$D_8 = \{(a_1,\ldots,a_8) \in \mathbb{Z}^8, a_1 + \cdots + a_8 \in 2\mathbb{Z}\}.$$

Then $\vartheta(\tau, z_1) \cdot \ldots \cdot \vartheta(\tau, z_8)$ is a Jacobi form of weight 4 for the root lattice D_8 . We can take its arithmetic lifting (Gr-1993)

$$\Phi_4(\tau, z_1, \dots, z_8, \omega) = \operatorname{G-Lift} (\vartheta(\tau, z_1) \cdot \dots \cdot \vartheta(\tau, z_8)),$$

$$\Phi_4 \in M_4(O^+(2U \oplus D_8(-1)), \chi_2).$$

10. Proof: a game with sums of non-zero squares

1) We embed the diagonal quadratic form $\langle 2n+2\rangle\oplus\langle 2d\rangle$ in D_8 :

$$(u_{2n+2} = (a_1, \ldots, a_k), \ v_{2d} = (b_1, \ldots, b_{8-k})) \in D_8.$$

2) We get an embedding of the lattice $L_{2n+2,2d} \rightarrow 2U \oplus D_8(-1)$ and the corresponding homogeneous tube domains. 3) Using the pull-back of the modular form $\Phi_4(\tau, z_1, \ldots, z_8, \omega)$, we get a $\Gamma_{2n+2,2d}$ -modular form of weight 4:

$$F_4(\tau, z_1, z_2, \omega) =$$

$$= \operatorname{G-Lift} \left(\left(\vartheta(a_1 z_1) \cdot \ldots \cdot \vartheta(a_k z_1) \right) \cdot \left(\vartheta(b_1 z_2) \cdot \ldots \cdot \vartheta(b_{8-k} z_2) \right) \right).$$

4) $F_4 \neq 0$ if all a_i and b_j are non zero and F_4 is a cusp form if the cusp condition is satisfied.

5) $F_4(\tau, -z_1, z_2, \omega) = -F_4(\tau, z_1, z_2, \omega)$, i.e. F_4 is anti-invariant with respect to the reflection σ_{2n+2} , if k is odd.

Proposition.

1) 2*d* is a sum of 5 positive squares if $2d \neq 2, 4, 6, 10, 12, 18$. 2) 2*d* is a sum of 7 positive squares if $2d \neq 2, 4, 6, 8, 14, 20$. **Proof.** 169 is a sum of 1, 2, 3, 4, 5, 6 and 7 positive squares. $169 = 13^2 = 12^2 + 5^2 = 12^2 + 4^2 + 3^2 = 11^2 + 3.4^2 = 12^2 + 4^2 + 2.2^2 + 1 = 10^2 + 2.5^2 + 2.3^2 + 1 = 11^2 + 5^2 + 4^2 + 2^2 + 3.1$. Then $n - 169 = a^2 + b^2 + c^2 + d^2$ and one has to check only n < 169.

Conjecture. 2d is a sum of 3 positive squares if 2d does not belong to

$$\{4' \cdot m, m \equiv 7 \mod 8\} \cup \{4' \cdot (1, 2, 5, 10, 13, 25, 37, 58, 85, 130)\}.$$

12. Particular series of irrational moduli spaces

- Let n = 2. Then 2n + 2 = 6 = 4 + 1 + 1. Therefore $\mathcal{M}(Kum^2, h_{2d}^{split})$ is irrational if $2d \neq 2, 4, 6, 10, 12, 18$. The same result we have for n = 5 (cusp), $6, 8, 10, \dots$
- The "dual" result for h_6 (and also for 2d = 12, 14, 18, 22, ...): $\mathcal{M}(Kum^n, h_6^{split})$ is irrational if $n \neq 2, 4, 5, 8$.
- Let n = 3. Then $2n + 2 = 8 = 2^2 + 4.1$. Therefore $\mathcal{M}(Kum^3, h_{2d}^{split})$ is irrational if $2d = 6, 12, 14, 18, \ldots$ is a sum of three positive squares.
- Let n = 6. Then 2n + 2 = 14 = 9 + 4 + 1 = 3.4 + 2.1. Then $\mathcal{M}(Kum^6, h_{2d}^{split})$ is irrational if $2d \neq 2, 4, 10$.
- The dual result: $\mathcal{M}(Kum^n, h_{14}^{split})$ is irrational if $n \neq 4$.

• Let
$$2d = 4 = 2^2$$
. Then we get $\mathcal{M}(Kum^n, h_4^{split})$ is irrational if $n \neq 2, 3, 5, 6, 9$.