Automorphic Lie Algebras on Complex Tori

Casper Oelen

Heriot-Watt University

2024

Casper Oelen (Heriot-Watt University) Automorphic Lie Algebras on Complex Tori

- What are automorphic Lie algebras?
- Motivation/history
- Classification of automorphic Lie algebras on complex tori¹

¹Vincent Knibbeler, Sara Lombardo, and Casper Oelen. "Automorphic Lie algebras on complex tori". In: *Proceedings of the Edinburgh Mathematical Society (to appear)* (2024).

What are automorphic Lie algebras?

Let X be a Riemann surface and \mathfrak{g} be a complex finite-dimensional, semisimple Lie algebra. Automorphic Lie algebras (aLias) are defined as Lie algebras of meromorphic maps

$$X \to \mathfrak{g},$$

with the following properties:

- Lie structure $[f,g](p) = [f(p),g(p)], p \in X$
- In holomorphic outside a set of punctures
- equivariant with respect to a group Γ acting on X and g by automorphisms

<日

<</p>

- Automorphic Lie algebras generalise various Lie algebras
 - (twisted) loop algebras, (twisted) current algebras, Onsager algebras
- Appear in integrable systems (e.g. reduction of Lax pairs)
- Applications in geometric deep learning²

²Vincent Knibbeler. "Computing equivariant matrices on homogeneous spaces for geometric deep learning and automorphic Lie algebras". In: *Advances in Computational Mathematics* 50.2 (2024), p. 27.

The ingredients of an automorphic Lie algebra are:

- $\bullet\,$ Finite-dimensional complex Lie algebra $\mathfrak g$
- Riemann surface X
- Discrete group Γ acting on X and \mathfrak{g} via faithful homomorphisms

$$\rho: \Gamma \to \operatorname{Aut}(\mathfrak{g}), \quad \sigma: \Gamma \to \operatorname{Aut}(X)$$

• The algebra $\mathcal{O}_{\mathbb{X}}$ of meromorphic functions on X holomorphic on $\mathbb{X} := X \setminus S$, with $\sigma(\Gamma)S \subset S$

Alternative definition aLias

An aLia is a fixed point Lie subalgebra of $\mathfrak{g} \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{X}}$ with respect to the action $\gamma \cdot (A \otimes f(z)) = \rho(\gamma)A \otimes f(\sigma(\gamma)^{-1}z), \ \gamma \in \Gamma$:

$$(\mathfrak{g}\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{X}})^{
ho\otimes\sigma(\mathsf{\Gamma})}=\{a\in\mathfrak{g}\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{X}}:\gamma\cdot a=a ext{ for any }\gamma\in\mathsf{\Gamma}\}.$$

5/38

< 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Twisted loop algebras

Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} and $\mathbb{C}[z, z^{-1}]$ the space of Laurent polynomials. Let ρ be an order *n* automorphism of \mathfrak{g} .

- Form the Loop algebra $\mathcal{L}(\mathfrak{g}) = \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[z, z^{-1}]$ with bracket $[A \otimes f, B \otimes g] := [A, B] \otimes fg$.
- $\mathcal{L}(\mathfrak{g})$ is the Lie algebra of Laurent polynomials $f : \mathbb{C} \setminus \{0\} \to \mathfrak{g}$.
- The *twisted* loop algebra L(g, ρ) is the space of equivariant maps
 f : C \ {0} → g:

$$\rho f(z) = f(\epsilon z), \quad \epsilon^n = 1.$$

Kac (1969) proved that for any inner automorphism ρ , there is an isomorphism

$$\mathcal{L}(\mathfrak{g},
ho)\cong\mathfrak{g}\otimes_{\mathbb{C}}\mathbb{C}[z,z^{-1}]$$

of $\mathbb{Z}\text{-}\mathsf{graded}$ Lie algebras. The isomorphism can be written as

$$(\mathfrak{g}\otimes_{\mathbb{C}}\mathbb{C}[z,z^{-1}])^{\mathcal{C}_n}\cong\mathfrak{g}\otimes_{\mathbb{C}}\mathbb{C}[z,z^{-1}]^{\mathcal{C}_n}\cong\mathfrak{g}\otimes_{\mathbb{C}}\mathbb{C}[z,z^{-1}].$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

History/Motivation

The notion of reduction group was introduced by A.V. Mikhailov in the context of reduction of Lax pairs [Mik80].

- Certain "elliptic automorphic Lie algebras" appear in the works of Reiman and Semenov-Tyan-Shanskii [RSTS89] and Uglov [Ugl94]
- ALias as a subject on its own was introduced by Mikhailov and Lombardo in [LM04],[LM05]. Further work related to integrable systems by Bury and Mikhailov [BM21]
- Algebraic development by Knibbeler and Lombardo with Sanders [KLS20], [KLS17], with Veselov [KLV22] and with Oelen [KLO24]
- In algebra, aLias are known as equivariant map algebras, introduced by Neher, Savage and Senesi [NSS12]

The classification of aLias is part of the programme of classifying Lax operators and hence of classifying integrable systems.

э

< 日 > < 同 > < 三 > < 三 > <

Motivation for aLias with genus ≥ 1

Suppose one wants to construct a Lax pair L(z), $M(z) \in \mathfrak{g}$ on a curve of genus g. It is known that for $g \geq 1$, there is an obstruction as a consequence of the Riemann-Roch Theorem. Generically:

number of equations > number of variables

whenever $g \ge 1$. Possible ways to resolve this:

Tyurin parameters

Impose symmetry to obtain consistent system

Point 2 is related to aLias. We demand that L(z), M(z) satisfy

$$\rho(\gamma)L(\sigma(\gamma)^{-1}z) = L(z), \quad \rho(\gamma)M(\sigma(\gamma)^{-1}z) = M(z),$$

where ρ, σ represent the actions of the reduction group Γ .

▲御 ▶ ▲ 国 ▶ ▲ 国 ▶ …

The goal

Classify

$$(\mathfrak{g}\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\rho\otimes\sigma(\Gamma)},$$

where $\rho : \Gamma \to \operatorname{Aut}(\mathfrak{g})$ and $\sigma : \Gamma \to \operatorname{Aut}(T)$ are (faithful) homomorphisms. The programme is:

- Classify groups Γ that can be faithfully embedded in both ${\rm Aut}(\mathfrak{g})$ and ${\rm Aut}(\mathcal{T})$
- Classify the embeddings ρ and σ
- Compute ring of invariants $\mathcal{O}_{\mathbb{T}}^{\Gamma}$

In certain cases we can construct an intertwining map that allows us to find explicit normal forms and classify aLias

$$(\mathfrak{g}\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{K},$$

where $K \lhd \Gamma$.

• Classify
$$(\mathfrak{g} \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}/K})^{\Gamma/K}$$

< 回 > < 回 > < 回 >

- The case of genus 0: Intensively studied over the past two decades [LS10], [KLS20]
- Hyperbolic: Automorphic Lie algebras of modular type: [KLV22]
- Flat geometry: Genus 1 case the topic of this talk [KLO24]

• • = • • = •

The classification of $(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\Gamma}$

Let $\tau \in \mathbb{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. The following Lie algebras appear in the classification:

1

2

 $\mathfrak{C}_{\tau} = \mathfrak{sl}_2(\mathbb{C}) \otimes_{\mathbb{C}} \mathbb{C}[x, y]/(y^2 - 4x^3 + g_2(\tau)x + g_3(\tau)),$

with Lie structure inherited from $\mathfrak{sl}_2(\mathbb{C})$.

 $\mathfrak{S}_{\tau} = \mathbb{C}\langle E, F, H \rangle \otimes_{\mathbb{C}} \mathbb{C}[x],$

with Lie structure (linear over $\mathbb{C}[x]$)

 $[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H \otimes (4x^3 - g_2(\tau)x - g_3(\tau)).$

3 The Onsager algebra \mathfrak{O}

The Lie algebras that appear in the classification of

 $(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\rho\otimes \widetilde{\sigma}(\Gamma)}$

fall into three (pairwise non-isomorphic) classes determined by the branch points of the canonical projection

$$\pi: \mathbb{T} \to \mathbb{T}/\Gamma.$$

# branch points	Lie algebra
0	$\mathfrak{C}_{[\tau]}$
2	ວີ
3	$\mathfrak{S}_{[\tau]}$

Table: Lie algebra associated to the number of branch points of the quotient map $\mathbb{T} \to \mathbb{T}/\Gamma$.

• dim
$$\mathfrak{A}/[\mathfrak{A},\mathfrak{A}] = \#$$
(branch points of π)
• $\mathfrak{C}_{[\tau]} \cong \mathfrak{C}_{[\tau']} \iff [\tau] = [\tau']$
• $[\tau] = [\tau'] \implies \mathfrak{S}_{[\tau]} \cong \mathfrak{S}_{[\tau']}$, but $\mathfrak{S}_{[\tau]} \cong \mathfrak{S}_{[\tau']} = [\tau']$
per Oelen (Heriot-Watt University) Automorphic Lie Algebras on Complex Tori 2024 12/38

Classification of Γ

The group Aut(T) of biholomorphic automorphisms of a torus T is

 $\operatorname{Aut}(T) = \operatorname{Aut}_0(T) \ltimes t(T),$

where t(T) = subgroup of translations of T and $\text{Aut}_0(T)$ is the subgroup of automorphisms that fix 0. Finite subgroups of Aut(T) are of the form

$$C_{\ell} \ltimes (C_N \times C_M),$$

for some $\ell \in \{1, 2, 3, 4, 6\}$ and $N, M \in \mathbb{Z}_{\geq 1}$. The finite groups that may embed simultaneously in $Aut(\mathfrak{sl}_2)$ and $Aut(\mathcal{T})$ are given by

$$1 \ltimes C_N, \quad C_2 \ltimes C_N \cong D_N, \quad C_3 \ltimes (C_2 \times C_2) \cong A_4, \quad C_\ell \ltimes 1,$$

using Klein's classification of finite subgroups of $Aut(\mathfrak{sl}_2)$.

13/38

ヘロト 不得 トイヨト イヨト 二日

Classification of subgroups of Aut(T)

The subgroups of Aut(T) which are isomorphic to one of the finite groups of our list are classified by the following list, up to conjugation.

C_N =
$$\langle r : r^N = 1 \rangle$$
,
 (*c* ⊂ Aut₀(*T*), *r*(*z*) = $e^{2\pi i/\ell}z$ ($\ell \in \{2, 3, 4, 6\}$)).
 (*c* ⊂ Aut₀(*T*), *r*(*z*) = *z* + α (α is a *N*-torsion point in *T*).

 (*r*) ⊂ *t*(*T*), *r*(*z*) = *z* + α (α is a *N*-torsion point in *T*).

 (*r*) ⊂ *t*(*T*), *r*(*z*) = *z* + $\pi/2$, *r*(*z*) = *z* + $1/2$.

 (*c*) ≈ *C*₂ ⊂ *t*(*T*), *s*(*z*) = *z* + $\pi/2$, *r*(*z*) = *z* + $1/2$.

 (*a* is a *N*-torsion point in *T*).

 (*a* is a *N*-torsin (*a* is a *N*-torsin (*a*

2024

Automorphic functions

Algebras of automorphic functions $\mathcal{O}_{\mathbb{T}}^{\Gamma}$ play a prominent role in computing aLias. Let $\mathcal{T} = \mathbb{C}/\Lambda$. For Γ in our list:

•
$$\mathcal{O}_{\mathbb{T}}^{C_N} = \mathbb{C}[\wp, \wp']$$
, where $g(T/C_N) = 1$
• $\mathcal{O}_{\mathbb{T}}^{C_\ell} = \begin{cases} \mathbb{C}[\wp], \quad \ell = 2 \\ \mathbb{C}[\wp'], \quad \ell = 3 \\ \mathbb{C}[\wp'], \quad \ell = 4 \\ \mathbb{C}[\wp^3], \quad \ell = 6 \end{cases}$, where $g(T/C_\ell) = 0$
• $\mathcal{O}_{\mathbb{T}}^{C_2 \times C_2} = \mathbb{C}[\wp_{\frac{1}{2}\Lambda}, \wp'_{\frac{1}{2}\Lambda}]$
• $\mathcal{O}_{\mathbb{T}}^{D_N} = \mathbb{C}[\wp]$
• $\mathcal{O}_{\mathbb{T}}^{A_4} = \mathbb{C}[\wp'_{\frac{1}{2}\Lambda\omega_6}]$

<日

<</p>

Example 1: Landau-Lifshitz equation

The aLia with $\Gamma = C_2 \times C_2$ plays a prominent role in integrable systems:

• Appears in Sklyanin's Lax pair for the Landau-Lifshitz equation The Landau-Lifshitz equation

$$S_t = S \times S_{xx} + S \times JS,$$

can be written as the compatibility condition [L, M] = 0 where

$$L(z) = \partial_x - (iS_1A_1 + S_2A_2 + iS_3A_3),$$

$$M(z) = \partial_t - \frac{1}{2}(iU_1A_1 + U_2A_2 + iU_3A_3 + iS_1A_1' + S_2A_2' + iS_3A_3'),$$

with $U = S \times S_x$. A_k, A'_k form a basis of $(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{C_2 \times C_2}$ over $\mathbb{C}[\wp_{\frac{1}{2}\Lambda}]$:

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\mathcal{C}_2\times\mathcal{C}_2}=\bigoplus_{k=1}^3\mathbb{C}[\wp_{\frac{1}{2}\Lambda}]A_k\oplus\mathbb{C}[\wp_{\frac{1}{2}\Lambda}]A_k'$$

ヘロン 人間 とくほ とくほとし ほ

Example 2: Onsager's algebra

Onsager's algebra: Used in the solution of the 2D Ising model. \mathfrak{O} is generated by A_k , G_m with brackets

$$[A_k, A_l] = 4G_{k-l},$$

$$[A_k, G_m] = 2(A_{k-m} - A_{k+m}),$$

$$[G_m, G_n] = 0,$$

with
$$G_{-m} = -G_m (m > 0)$$
 and $G_0 = 0$.

Theorem (Knibbeler, Lombardo, Veselov (21'))

$$\mathfrak{O}\cong\mathbb{C}\langle h,e,f
angle\otimes_{\mathbb{C}}\mathbb{C}[J]$$

with Lie structure

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h \otimes J(J - 1).$$

(日)

2024

Elliptic realisation of Onsager's algebra

Theorem ((Genus 0 case) Knibbeler, Lombardo, O (24'))

Let $\rho : C_{\ell} \to \operatorname{Aut}(\mathfrak{sl}_2)$ and $\sigma : C_{\ell} \to \operatorname{Aut}(T)$ be monomorphisms and assume that $g(T/\sigma(C_{\ell})) = 0$. Then

$$(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\rho \otimes \tilde{\sigma}(\mathcal{C}_\ell)} \cong \mathfrak{O},$$

if and only if $\ell \in \{3, 4, 6\}$.

For example, letting $\sigma(r)z = \omega_3 z$, we have

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\sigma(\mathcal{C}_\ell)}=\mathbb{C}\langle e\otimes\wp,f\otimes\wp^2,h
angle\otimes_{\mathbb{C}}\mathbb{C}[\wp'],$$

where e, f, h is the standard basis of \mathfrak{sl}_2 .

Notice

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\mathcal{C}_\ell}
ot\cong\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}}^{\mathcal{C}_\ell}$$

2024

A (1) < A (2) < A (2) </p>

Constructing intertwiners

Suppose that we can find $\Psi : \mathcal{T} \to \operatorname{Aut}_{\mathcal{O}_{\mathbb{T}}}(\mathfrak{g} \otimes \mathcal{O}_{\mathbb{T}})$ such that

() Ψ is meromorphic on T and holomorphic on $T \setminus \Gamma \cdot \{0\}$

$$\Psi(\sigma(\gamma)z) = \rho(\gamma)\Psi(z)$$

3 det $(\Psi(z)) = 1$

Then

$$\mathfrak{g}\otimes\mathcal{O}_{\mathbb{T}}=\Psi(z)(\mathfrak{g}\otimes\mathcal{O}_{\mathbb{T}})=\Psi(z)(\mathfrak{g})\otimes\mathcal{O}_{\mathbb{T}}\cong\mathfrak{g}\otimes\mathcal{O}_{\mathbb{T}}.$$

Hence

$$\left(\mathfrak{g}\otimes\mathcal{O}_{\mathbb{T}}\right)^{\mathsf{\Gamma}}\cong\mathfrak{g}\otimes\mathcal{O}_{\mathbb{T}}^{\mathsf{\Gamma}}.\tag{1}$$

For this to apply, it is necessary that $\Gamma_p = 1$ for all $p \in T$ (i.e. $T \to T/\Gamma$ has no branch points). Indeed, if $\Gamma_p \neq 1$, then the evaluation representation

$$\operatorname{ev}_{p}: (\mathfrak{g}\otimes \mathcal{O}_{\mathbb{T}})^{\Gamma} \to \mathfrak{g}^{\Gamma_{p}}$$

evaluates to a lower dimensional Lie subalgebra of \mathfrak{g} .

Strategy for $\Gamma = C_N$: Look for a matrix $\Omega_i(z) \in SL_2(\mathbb{C})$ such that

$$\Omega_j(z+lpha) = \begin{pmatrix} \omega_N^j & 0 \\ 0 & \omega_N^{-j} \end{pmatrix} \Omega_j(z),$$

where $\alpha \in T$ *N*-torsion point and $j \not\equiv N/2 \mod N$. Introduce

$$\Omega_j(z) = egin{pmatrix} arphi_{-j}(z) & rac{1}{\mu}arphi_j(z)arphi_{-2j}(z) + rac{\lambda}{2\mu}arphi_{-j}(z) \ arphi_j(z) & rac{1}{\mu}arphi_{-j}(z)arphi_{2j}(z) - rac{\lambda}{2\mu}arphi_j(z) \end{pmatrix},$$

where $\lambda,\mu\in\mathbb{C}$ and

$$arphi_j(z) = \sum_{k=0}^{N-1} rac{\wp'(z-klpha)}{\omega_N^{kj}(\wp(z-klpha)-\wp(lpha))}, \quad (lpha \; extsf{N-torsion point})$$

φ is the Weierstrass p-function associated to the appropriate lattice
φ_j (j ≠ 0) has simple poles in Zα and φ_j(z + α) = ω_N^{-j}φ_j(z)
Ω_j is a meromorphic map T → SL₂(C), holomorphic on T
Ω_j(z + α) = diag(ω_N^j, ω_N^{-j})Ω_j(z)

Theorem (Genus 1 case. Knibbeler, Lombardo, O (24'))

Let $\rho: C_N \to \operatorname{Aut}(\mathfrak{sl}_2)$ and $\sigma: C_N \to t(T)$ be monomorphisms. Then

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{
ho\otimes ilde{\sigma}(\mathcal{C}_N)}\cong\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}}^{ ilde{\sigma}(\mathcal{C}_N)}.$$

A normal form is given by

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{
ho\otimes \widetilde{\sigma}(\mathcal{C}_N)}=\mathbb{C}\langle E,F,H
angle\otimes_{\mathbb{C}}\mathbb{C}[\wp_\Lambda,\wp'_\Lambda],$$

where Λ is a suitable lattice, and with brackets

$$[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H,$$

where E, F and H are the images under $Ad(\Omega_j)$, for some integer $j \neq 0$ mod N/2, of $e \otimes 1$, $f \otimes 1$ and $h \otimes 1$, respectively.

21/38

(人間) トイヨト イヨト ニヨ

An explicit basis for $(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\rho \otimes \tilde{\sigma}(\mathcal{C}_N)}$

Let

$$H_j = \operatorname{Ad}(\Omega_j(z)) egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}, \quad E_j = \operatorname{Ad}(\Omega_j(z)) egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix},$$

and

$$F_j = \operatorname{Ad}(\Omega_j(z)) \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

$$\begin{split} H_{j} &= \frac{1}{\mu} \begin{pmatrix} \varphi_{-j}^{2}\varphi_{2j} + \varphi_{-2j}\varphi_{j}^{2} & -2\varphi_{-j}\varphi_{j}\varphi_{-2j} - \lambda\varphi_{-j}^{2} \\ 2\varphi_{-j}\varphi_{j}\varphi_{2j} - \lambda\varphi_{j}^{2} & -\varphi_{-j}^{2}\varphi_{2j} - \varphi_{-2j}\varphi_{j}^{2} \end{pmatrix}, \\ E_{j} &= \begin{pmatrix} -\varphi_{-j}\varphi_{j} & \varphi_{-j}^{2} \\ -\varphi_{j}^{2} & \varphi_{-j}\varphi_{j} \end{pmatrix}, \end{split}$$

and

$$F_{j} = \frac{1}{4\mu^{2}} \begin{pmatrix} 4\varphi_{-j}\varphi_{j}\varphi_{-2j}\varphi_{2j} + \lambda^{2}\varphi_{-j}\varphi_{j} + 2\lambda\mu & -4\varphi_{j}^{2}\varphi_{-2j}^{2} - 4\lambda\varphi_{-j}\varphi_{j}\varphi_{-2j} - \lambda^{2}\varphi_{-j}^{2} \\ 4\varphi_{-j}^{2}\varphi_{2j}^{2} - 4\lambda\varphi_{-j}\varphi_{j}\varphi_{2j} + \lambda^{2}\varphi_{j}^{2} & -4\varphi_{j}\varphi_{-j}\varphi_{2j}\varphi_{-2j} - \lambda^{2}\varphi_{-j}\varphi_{j} - 2\lambda\mu \end{pmatrix}.$$

2024

イロン イ理 とく ヨン イ ヨン

22 / 38

э

Higher dimensional base Lie algebras

For certain representations $C_N \to \operatorname{Aut}(\mathfrak{sl}_n)$, we can obtain intertwiners in a simple way, using the construction for n = 2. For example, for n odd we define

$$\tilde{\Omega}(z) = \operatorname{diag}(1, \Omega_{j_1}(z), \ldots, \Omega_{j_m}(z)).$$

We still have $\det(ilde{\Omega}(z))=1$ and

$$\tilde{\Omega}(z+\alpha)=R\tilde{\Omega}(z),$$

where $\alpha \in T$ is a *N*-torsion point and $R = 1 \oplus R_{j_1} \oplus \cdots \oplus R_{j_m}$. Hence

$$(\mathfrak{sl}_n\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\mathcal{C}_N}\cong\mathfrak{sl}_n\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}}^{\mathcal{C}_N}$$

$\Gamma = D_N$

Corollary (Knibbeler, Lombardo, O (24'))

Let $\rho: D_N \to \operatorname{Aut}(\mathfrak{sl}_2)$ and $\sigma: D_N \to \operatorname{Aut}(T)$ be monomorphisms. Then $(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\rho \otimes \tilde{\sigma}(D_N)} \cong \mathfrak{S}_{\tau},$

for some $\tau \in \mathbb{H}$. A normal form is given by

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{
ho\otimes \widetilde{\sigma}(D_N)}=\mathbb{C}\langle \widetilde{E},\widetilde{F},\widetilde{H}
angle\otimes_{\mathbb{C}}\mathbb{C}[\wp_{\Lambda}],$$

where Λ is a suitable lattice and $\tilde{E} = E \otimes \wp'_{\Lambda}$, $\tilde{F} = F \otimes \wp'_{\Lambda}$ and $\tilde{H} = H$. The Lie structure is given by

$$[\tilde{H},\tilde{E}]=2\tilde{E},\quad [\tilde{H},\tilde{F}]=-2\tilde{F},\quad [\tilde{E},\tilde{F}]=\tilde{H}\otimes(4\wp_{\Lambda}^{3}-g_{2}\wp_{\Lambda}-g_{3}). \quad (2)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\Gamma = C_2 \times C_2$ setup

Any representation $\rho: C_2 \times C_2 \to \operatorname{Aut}(\mathfrak{sl}_2)$ is equivalent to

$$\rho(r_1) = \operatorname{Ad}(T_1), \quad \rho(r_2) = \operatorname{Ad}(T_2),$$

where $T_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $T_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Suppose we look for matrix valued function $\Omega : \mathbb{T} \to GL_2(\mathbb{C})$ which is $C_2 \times C_2$ -equivariant:

$$\Omega(z+\frac{1}{2})=T_1\Omega(z), \quad \Omega(z+\frac{\tau}{2})=T_2\Omega(z),$$

for all $z \in \mathbb{T}$. There is an obstruction. One way around this: Look instead for

$$\Omega: \mathbb{C} \to \operatorname{Mat}_{2 \times 2}(\mathbb{C}),$$

$$\Omega(z+\frac{1}{2})=T_1\Omega(z), \quad \Omega(z+\frac{\tau}{2})=f(z)T_2\Omega(z),$$

where $f : \mathbb{C} \to \mathbb{C}$ is some function.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

$\Gamma = C_2 \times C_2$ setup

Let $au \in \mathbb{H}$ and define the theta functions with characteristics

$$heta_{a,b}(z| au) = \sum_{k\in\mathbb{Z}} \exp\Big\{\pi i \tau (k+a)^2 + 2\pi i (k+a)(z+b)\Big\},$$

where $a, b \in \mathbb{Q}$. This defines a holomorphic, quasi-periodic function on \mathbb{C} :

$$\theta_{a,b}(z+1|\tau) = e^{2\pi i a} \theta_{a,b}(z|\tau), \quad \theta_{a,b}(z+\tau|\tau) = e^{-\pi i (2z+2b+\tau)} \theta_{a,b}(z|\tau).$$

The Jacobi Theta functions are defined by

$$\begin{split} \theta_1(z|\tau) &= -\theta_{\frac{1}{2},\frac{1}{2}}(z|\tau), & \theta_3(z|\tau) = \theta_{0,0}(z|\tau), \\ \theta_2(z|\tau) &= \theta_{\frac{1}{2},0}(z|\tau), & \theta_4(z|\tau) = \theta_{0,\frac{1}{2}}(z|\tau). \end{split}$$

$\Gamma = C_2 \times C_2$ setup

Define

$$\Omega(z) = \begin{pmatrix} \theta_3(2z|2\tau) & \left(\theta_3^2(0|2\tau)\frac{\theta_4(2z|2\tau)}{\theta_1(2z|2\tau)} + \theta_2^2(0|2\tau)\frac{\theta_1(2z|2\tau)}{\theta_4(2z|2\tau)}\right)\theta_2(2z|2\tau) \\ \theta_2(2z|2\tau) & \left(\theta_3^2(0|2\tau)\frac{\theta_1(2z|2\tau)}{\theta_4(2z|2\tau)} + \theta_2^2(0|2\tau)\frac{\theta_4(2z|2\tau)}{\theta_1(2z|2\tau)}\right)\theta_3(2z|2\tau) \end{pmatrix}$$

Then

1
$$\Omega(z + \frac{1}{2}) = T_1 \Omega(z)$$
2 $\Omega(z + \frac{\tau}{2}) = e^{-\pi i (2z + \frac{\tau}{2})} T_2 \Omega(z)$
3 $\det \Omega(z) = -\theta_2^2(0|\tau) \theta_1(2z|\tau)$

Proposition

For Ω as above:

$$\operatorname{Ad}(\Omega) \in \operatorname{Aut}_{\mathcal{O}_{\mathbb{T}}}(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})$$

Casper Oelen (Heriot-Watt University) Automorphic Lie Algebras on Complex Tori

▶ ≣ ৩৭৫ 27/38

< □ > < □ > < □ > < □ > < □ >

Denote by h, e, f the standard basis of \mathfrak{sl}_2 .

Theorem (Knibbeler, Lombardo, O (24'))

Let $\rho : C_2 \times C_2 \to \operatorname{Aut}(\mathfrak{sl}_2)$ and $\sigma : C_2 \times C_2 \to \operatorname{Aut}(T)$ be monomorphisms and assume that $g(T/\sigma(C_2 \times C_2)) = 1$. Then

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{
ho\otimes ilde{\sigma}(\mathcal{C}_2 imes\mathcal{C}_2)}\cong\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}}^{ ilde{\sigma}(\mathcal{C}_2 imes\mathcal{C}_2)}$$

A normal form is given by

$$(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\rho \otimes \tilde{\sigma}(\mathcal{C}_2 \times \mathcal{C}_2)} = \mathbb{C} \langle \mathcal{H}, \mathcal{E}, \mathcal{F} \rangle \otimes_{\mathbb{C}} \mathbb{C}[\wp_{\frac{1}{2}\Lambda}, \wp_{\frac{1}{2}\Lambda}']$$

with

$$[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H,$$

where $H = \operatorname{Ad}(\Omega)h$, $E = \operatorname{Ad}(\Omega)e$, $F = \operatorname{Ad}(\Omega)f$.

く 目 ト く ヨ ト く ヨ ト

The explicit generators of $(\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\mathcal{C}_2 \times \mathcal{C}_2}$

Write θ_j for $\theta_j(0|\tau)$, j = 1, 2, 3, 4.

$$\begin{split} H(z) &= -\frac{1}{\theta_2^2} \begin{pmatrix} -\frac{\theta_2^4}{\theta_3 \theta_4} \lambda_3(z) \lambda_4(z) & -\theta_2 \psi_-(z) \lambda_2(z) \\ \theta_2 \psi_+(z) \lambda_2(z) & \frac{\theta_2^4}{\theta_3 \theta_4} \lambda_3(z) \lambda_4(z) \end{pmatrix}, \\ E(z) &= -\frac{1}{2\theta_2^2} \begin{pmatrix} -\theta_2 \lambda_2(z) & \theta_3 \lambda_3(z) + \theta_4 \lambda_4(z) \\ -\theta_3 \lambda_3(z) + \theta_4 \lambda_4(z) & \theta_2 \lambda_2(z) \end{pmatrix}, \\ F(z) &= -\frac{1}{2\theta_2^2} \begin{pmatrix} \theta_2 \psi_-(z) \psi_+(z) \lambda_2(z) & -\psi_-(z) (\theta_3 \lambda_3(z) - \theta_4 \lambda_4(z)) \\ \psi_+(z) (\theta_3 \lambda_3(z) + \theta_4 \lambda_4(z)) & -\theta_2 \psi_-(z) \psi_+(z) \lambda_2(z) \end{pmatrix} \end{split}$$

where $\psi_{\pm} = \pm \frac{\theta_4^2}{\theta_3} \lambda_3(z) - \frac{\theta_3^2}{\theta_4} \lambda_4(z)$ and $\lambda_j(z) = \frac{\theta_j(2z|\tau)}{\theta_1(2z|\tau)}$.

Casper Oelen (Heriot-Watt University) Automorphic Lie Algebras on Complex Tori

< @ ▶ < 볼 ▶ < 볼 ▶ 2024

Theorem (Knibbeler, Lombardo, O (24'))

Let $T \cong T_{\omega_6}$ and $\rho : A_4 \to \operatorname{Aut}(\mathfrak{sl}_2)$ and $\sigma : A_4 \to \operatorname{Aut}(T)$ be monomorphisms. Let $\mathbb{T} = T \setminus A_4 \cdot \{0\}$. There is the following isomorphism of Lie algebras:

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\rho\otimes\tilde{\sigma}(A_4)}\cong\mathfrak{O},$$

where $\mathfrak O$ is the Onsager algebra. A normal form is given by

$$(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\rho\otimes\tilde{\sigma}(A_4)}=\mathbb{C}\langle E\otimes\wp_{\frac{1}{2}\Lambda_{\omega_6}},F\otimes\wp_{\frac{1}{2}\Lambda_{\omega_6}}^2,H\rangle\otimes_{\mathbb{C}}\mathbb{C}[\wp_{\frac{1}{2}\Lambda_{\omega_6}}'],$$

where E, F, H are the generators of the $C_2 \times C_2$ -aLia.

< 口 > < 同 > < 回 > < 回 > < 回 > <

A summary

Our classification of $(\mathfrak{sl}_2\otimes_{\mathbb{C}}\mathcal{O}_{\mathbb{T}})^{\Gamma}$ can be summarised in the following table:

	0	2	3
<i>C</i> ₂	$\mathfrak{C}_{ au}$		$\mathfrak{S}_{ au}$
$C_N, N = 3, 4, 6$	$\mathfrak{C}_{ au}$	\mathfrak{O}	
$\textit{C}_\textit{N},~\textit{N} \neq 2,3,4,6$	$\mathfrak{C}_{ au}$		
$C_2 \times C_2$	$\mathfrak{C}_{ au}$		$\mathfrak{S}_{ au}$
$D_N, N \ge 3$			$\mathfrak{S}_{ au}$
A_4		\mathfrak{O}	

Table: Isomorphism classes of aLias for each symmetry group Γ and each number of branch points of the quotient map $\mathbb{T} \to \mathbb{T}/\Gamma$.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The Lie algebras \mathfrak{S}_{τ} : Some remarks

For \mathfrak{C}_{τ} we had $\mathfrak{C}_{\tau} \cong \mathfrak{C}_{\tau'} \iff T_{\tau} \cong T_{\tau'}$. For \mathfrak{S}_{τ} we know that

$$T_{\tau}\cong T_{\tau'}\implies \mathfrak{S}_{\tau}\cong\mathfrak{S}_{\tau'}.$$

It remains a conjecture that the other direction holds as well. The question boils down to studying the Lie algebras

$$\mathfrak{S}_{\lambda(au)} := (\mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathbb{C}[x])_{\lambda(au)}$$

with Lie structure

$$[H,E] = 2E, \quad [H,F] = -2F$$

and

$$[E,F]_{\lambda(\tau)} := H \otimes x(x-1)(x-\lambda(\tau)),$$

< 回 > < 回 > < 回 > <

2024

32 / 38

where λ is the modular Lambda function.

ALias (genus 1 case) $(\mathfrak{g} \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\Gamma}$ have been classified for $\mathfrak{g} = \mathfrak{sl}_2$. Current research related to this is focused on

- Extending the classification to g semisimple and Γ = 1 κ (C_N × C_M) ⊂ Aut(T)
- Proving or disproving $(\mathfrak{g} \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}})^{\Gamma} \cong \mathfrak{g} \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{T}}^{\Gamma}$ whenever Γ → Aut(T) is embedded without fixed points
- Applying in the context of elliptic Lax pairs

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you for listening!

æ

Literature References I

[BM21] Rhys T. Bury and Alexander V. Mikhailov. "Automorphic Lie algebras and corresponding integrable systems". In: Differential Geom. Appl. 74 (2021), Paper No. 101710–25. ISSN: 0926-2245. DOI: 10.1016/j.difgeo.2020.101710. URL: https://doi.org/10.1016/j.difgeo.2020.101710.

[KLO24] Vincent Knibbeler, Sara Lombardo, and Casper Oelen. "Automorphic Lie algebras on complex tori". In: Proceedings of the Edinburgh Mathematical Society (to appear) (2024).

[KLS17] Vincent Knibbeler, Sara Lombardo, and Jan A. Sanders. "Higher-dimensional automorphic Lie algebras". In: Foundations of Computational Mathematics 17.4 (2017), pp. 987–1035.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Literature References II

[KLS20] Vincent Knibbeler, Sara Lombardo, and Jan A. Sanders. "Hereditary automorphic Lie algebras". In: Communications in Contemporary Mathematics 22.08 (2020), p. 1950076.

- [KLV22] Vincent Knibbeler, Sara Lombardo, and Alexander P. Veselov. "Automorphic Lie Algebras and Modular Forms". In: International Mathematics Research Notices (Feb. 2022). rnab376. ISSN: 1073-7928. DOI: 10.1093/imrn/rnab376.
- [Kni24] Vincent Knibbeler. "Computing equivariant matrices on homogeneous spaces for geometric deep learning and automorphic Lie algebras". In: Advances in Computational Mathematics 50.2 (2024), p. 27.

[LM04] Sara Lombardo and Alexander V. Mikhailov. "Reductions of integrable equations: dihedral group". In: J. Phys. A 37.31 (2004), pp. 7727–7742. ISSN: 0305-4470.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Literature References III

[LM05] Sara Lombardo and Alexander V. Mikhailov. "Reduction groups and automorphic Lie algebras". In: Communications in Mathematical Physics 258.1 (2005), pp. 179–202.

- [LS10] Sara Lombardo and Jan A. Sanders. "On the classification of automorphic Lie algebras". In: Communications in Mathematical Physics 299.3 (2010), pp. 793–824.
- [Mik80] Alexander V. Mikhailov. "Reduction in integrable systems. The reduction group". In: *JETP Lett* 32.2 (1980), pp. 187–192.
- [NSS12] Erhard Neher, Alistair Savage, and Prasad Senesi. "Irreducible finite-dimensional representations of equivariant map algebras". In: *Transactions of the American Mathematical Society* 364.5 (2012), pp. 2619–2646.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [RSTS89] AG Reiman and MA Semenov-Tyan-Shanskii. "Lie algebras and Lax equations with spectral parameter on an elliptic curve".
 In: Journal of Soviet Mathematics 46 (1989), pp. 1631–1640.
- [Ugl94] DB Uglov. "The Lie algebra of the sl(2,C)-valued automorphic functions on a torus". In: *letters in mathematical physics* 31 (1994), pp. 65–76.

A B A A B A