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Integrable systems and automorphic forms

Joint ongoing work with Raffaele Vitolo

St. Opanasenko Bi-Hamiltonian geometry of WDVV equations 1 / 26



Witten–Dijkgraaf–Verlinde–Verlinde equations

The problem: in RN find a function F = F (t1, . . . , tN) such that

1 F1αβ :=
∂3F

∂t1∂tα∂tβ
= ηαβ constant symmetric nondegenerate matrix

2 cγαβ = ηγεFεαβ structure constants of an associative algebra

3 F (cd1t1, . . . , cdN tN) = cdF F (t1, . . . , tN) quasihomogeneity (d1 = 1)

If e1,. . . , eN is the basis of RN then the algebra operation is

eα · eβ = cγαβ(t)eγ with unity e1

The system of WDVV equations follows,

Sαβγν := ηµλ(FλαβFµγν − FλανFµβγ) = 0. (WDVV)
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Symmetries of WDVV

The WDVV system is invariant under linear change of transformations that preserves t1,

t̃ i = c i
j t

j with c i
1 = δi1.

With quasihomogeneity, if quasihomogeneity weights are distinct, the matrix ηαβ can
be reduced [Dubrovin, 1994] to

µ 0 0 1
0 0 1 0

. . .

0 1 0 0
1 0 0 0



Without quasihomogeneity, e.g. for n = 3, there are 4 canonical matrices [Mokhov,
Pavlenko, 2018],0 0 1

0 λ 0
1 0 µ

 ,

1 0 1
0 λ 0
1 0 µ

 ,

1 0 1
0 0 1
1 1 0

 ,

1 0 0
0 λ 0
0 0 µ

 ,

λ2 = 1, λ2 = 1, λ2 = 1, µ2 = 1
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Running example, WDVV with N = 4

Sαβγν := ηµλ(FλαβFµνγ − FλανFµβγ) = 0.

How many independent equations are in WDVV system?

µfyyz(fzzz − fyzz) + 2fyyz fxyz − fyyy fxzz − fxyy fyzz = 0,

fxxy fyzz − fxxz fyyz − µfzzz fxyz + fzzz + fxyy fxzz + µfxzz fyzz − f 2
xyz = 0,

fxxy fyyz − fxxz fyyy + µfyyz fxzz − µfxyz fyzz + fyzz = 0,

fxxy fxzz − µfxxz fzzz − 2fxxz fxyz + fxxx fyzz + µf 2
xzz = 0,

fxxz fxyy + µfxxz fyzz − fyyz fxxx − µfxzz fxyz + fxzz = 0,

fxxy fxyy + µfxxz fyyz − fxxx fyyy − µf 2
xyz + 2fxyz = 0.

for Dubrovin normal form

η(2) =


µ 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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Sαβγν := ηµλ(FλαβFµνγ − FλανFµβγ) = 0.

How many independent equations are in WDVV system?

First of all, F1αβ = ηαβ completely specifies the dependence of F on t1,

F =
1

6
η11(t1)3 +

1

2

∑
k>1

η1ktk(t1)2 +
1

2

∑
k,s>1

ηsktstkt1 + f (t2, . . . , tN).

Secondly, there are two apparent symmetries, Sαβγν = Sγναβ and Sανγβ = −Sαβγν .

In particular, any combination of parameters containing 3 or 4 identical letters gives rise
to a trivial equation, and any equation with 2 identical letters can be brought to a form
Sααγν .

Lastly, choosing α ∈ {2, . . . ,N} we can find a subsystem of the above system that is
linear with respect to α-independent derivatives and solve it. The remaining equations
then vanish.
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Running example, WDVV with N = 4

Consider the WDVV system,

µfyyz(fzzz − fyzz) + 2fyyz fxyz − fyyy fxzz − fxyy fyzz = 0,

fxxy fyzz − fxxz fyyz − µfzzz fxyz + fzzz + fxyy fxzz + µfxzz fyzz − f 2
xyz = 0,

fxxy fyyz − fxxz fyyy + µfyyz fxzz − µfxyz fyzz + fyzz = 0,

fxxy fxzz − µfxxz fzzz − 2fxxz fxyz + fxxx fyzz + µf 2
xzz = 0,

fxxz fxyy + µfxxz fyzz − fyyz fxxx − µfxzz fxyz + fxzz = 0,

fxxy fxyy + µfxxz fyyz − fxxx fyyy − µf 2
xyz + 2fxyz = 0.

(1)

for Dubrovin normal form

η(2) =


µ 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Choose a variable x and see that the latter 5 equations are linear wrt fyyy , fyyz , fyzz , fzzz .
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Mokhov–Ferapontov trick

1 Choose one distinguished independent variable tk , k > 1, and all third-order
derivatives fσ such as σk > 0; introduce new variables ui = f(3,0,...,0),
u2 = f(2,1,0,...0), . . . , un = f(1,0,...,2), n = N(N − 1)/2.

2 Choose another independent variable th 6= tk , h > 1 and find ui
th as the

tk -derivative of an expression V i :

ui
th = V i (u)tk . (2)

There are two possibilities:
1 either V i (u) is one of the coordinates uj , with j 6= k;
2 V i is a third-order derivative of f which is not one of the uj . In this case, V i must

be expressed by means of one of the equations of the WDVV system. This is always
possible due to the structure of the WDVV system.
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Geometric picture

{Sαβγν} ⊂ J3E = (tλ, fσ).

Given JmE = (xλ, v i
σ), consider the jet bundle J1JmE with coordinates (xλ, v i

σ, v̄
i
µτ )

where σ, τ ∈ NN are multiindices such that |σ|, |τ | ≤ m, and µ is an index. Note that
in cases when σ = µ+ τ the coordinates v i

σ and v̄ i
µτ are in general different.

Then, the sesquiholonomic jet bundle Ĵm+1E ⊂ J1JmE is identified in coordinates as the
subspace

v i
σ = v̄ i

µτ ,

for all σ, τ ∈ NN , |σ| ≤ m, µ ∈ {1, . . . ,N}, such that σ = µ + τ . So, the sesqui-
holonomic jet bundle can be endowed with coordinates (xλ, v i

σ, v
i
µτ ) where |σ| ≤ m,

|τ | = m, and µ is an index.
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Running example

Let us introduce new letters for third-order derivatives:

u1 = fxxx , u2 = fxxy , u3 = fxxz , u4 = fxyy , u5 = fxyz , u6 = fxzz ,

u7 = fyyy , u8 = fyyz , u9 = fyzz , u10 = fzzz .

We have the following compatibility relations:

u1
y = u2

x u1
z = u3

x u2
z = u3

y

u2
y = u4

x u2
z = u5

x u4
z = u5

y

u3
y = u5

x u3
z = u6

x u5
z = u6

y

u4
y = u7

x u4
z = u8

x u7
z = u8

y

u5
y = u8

x u5
z = u9

x u8
z = u9

y

u6
y = u9

x u6
z = u10

x u9
z = u10

y

In general, a WDVV system in dimension N is equivalent to N−2 commuting hydrodynamic-
type systems.
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Consider two systems

ui
y = (V i )x , ui

z = (W i )x .

Two such systems are said to commute if and only if the Jacobi bracket of the right-hand
sides vanishes: [V ,W ] = 0, where V = (V i )x∂ui and W = (W i )x∂ui . This is equivalent
to the requirement that W is a generalized symmetry of the system ui

y = (V i )x and
vice versa.

Definition

We say that a quasilinear first-order system of conservation laws (2) where (ui ) are
third-order derivatives of f and the equations are compatibility conditions for a WDVV
system to be a first-order WDVV system.
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Hamiltonian structures. Known results

N = 3
1st Dubrovin normal form (µ = 0): local 3rd order + local 1st order [Ferapontov,
Galvao, Mokhov, Nutku, 1997]
2nd Dubrovin normal form (µ 6= 0): local 3rd order + nonlocal 1st order [Vašiček,
Vitolo, 2021].
Mokhov–Pavlenko normal forms: local 3rd order + nonlocal 1st order [Vašiček, Vitolo,
2021].
All: local 3rd order + (non)local 1st order [Vašiček, Vitolo, 2021].

N = 4
1st Dubrovin normal form (µ = 0): local 3rd order + local 1st order [Ferapontov,
Mokhov, 1996], [Pavlov, Vitolo, 2015]
2nd Dubrovin normal form (µ 6= 0): local 3rd order [Vašiček, Vitolo, 2021].

N = 5
Dubrovin normal forms (µ ∈ {0, 1}): local 3rd order [Vašiček, Vitolo, 2021].
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Third-order Hamiltonian operator

Third-order homogeneous Hamiltonian operator in a canonical Doyle–Potemin form is

Aij
3 = Dx ◦ (hijDx + c ij

k uk
x ) ◦Dx .

Given cijk = hiqhjpcpq
k , the skew-symmetry conditions and the Jacobi identities for the

operator above are equivalent to

cskm =
1

3
(hsm,k − hsk,m),

hmk,p + hkp,m + hmp,k = 0

cmsk,l = −f pqcpmlcqsk ,

which implies that gij is a Monge metric,

gijduiduj = aijduiduj +bijkdui (ujduk−ukduj)+cijkl(uiduj−ujdui )(ukdul−ulduk).

Operator has a projective-geometric nature [Ferapontov, Pavlov, Vitolo, 2014].
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The metric fij can be factorized [Balandin, Potemin, 2001] as

fij = φαβψ
α
i ψ

β
j ,

(
or, in a matrix form, f = ΨΦΨ>

)
(3)

where φ is a constant non-degenerate symmetric matrix of dimension n, and

ψγk = ψγksu
s + ωγk

is a non-degenerate square matrix of dimension n, with the constants ψγij and ωγk satis-
fying the relations

ψγij = −ψγji ,

φβγ(ψβil ψ
γ
jk + ψβjl ψ

γ
ki + ψβklψ

γ
ij ) = 0,

φβγ(ωβi ψ
γ
jk + ωβj ψ

γ
ki + ωβk ψ

γ
ij ) = 0.

For the conservative system ut = (V (u))x , the necessary and sufficient conditions to
admit the above Hamiltonian operator are

himV m
j = hjmV m

i ,

V k
ij = hkscsmjV

m
i + hkscsmiV

m
j .

St. Opanasenko Bi-Hamiltonian geometry of WDVV equations 13 / 26



Running example, 3rd order Hamiltonian operator

h11 = u2
4 , h12 = (µu5 − 2)u5, h13 = 2u4(1− µu5),

h14 = µu3u5 − u1u4 − u3, h15 = −µ2u5u6 − µ(u2u5 − u3u4 − u6) + u2,

h16 = (µu5 − 1)2, h22 = 2u3(µu5 − 1),

h23 = −µ2u5u6 − µ(u2u5 + u3u4 − u6) + u2, h24 = µu2
3 ,

h25 = −µ2u3u6 − µ(u1u5 + u2u3) + u1, h26 = 2µu3(µu5 − 1),

h33 = µ2(2u4u6 + u2
5) + 2µ(u2u4 − u5) + 2,

h34 = −µ2u3u6 + µ(u1u5 − u2u3)− u1, h35 = µ((µu6 + u2)2 − h14),

h36 = µh23, h44 = u2
1 , h45 = −2µu1u3,

h46 = µ2u2
3 , h55 = µ2(2u1u6 + u2

3) + 2µu1u2,

h56 = µh25, h66 = 2µ2u3(u5µ− 1).
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First-order Hamiltonian operator

Standard Dubrovin–Novikov Hamiltonian operator is of the form

Aij
1 = g ijDx + Γij

kuk
x , where Γij

k = −g isΓj
sk .

The operator A1 is Hamiltonian if and only if the following conditions hold:

g ij = g ji ,

g ij
,k = Γij

k + Γji
k ,

g isΓjk
s = g jsΓik

s ,

R ij
hl = 0.

Thus, g is a flat metric, and Γi
jk are the Christoffel symbols of the corresponding Levi-

Civita connection.
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First-order Hamiltonian operator

First nonlocal generalisation of the standard Dubrovin–Novikov Hamiltonian operator is
of the form

Aij
1 = g ijDx + Γij

kuk
x + cui

xD
−1
x uj

x , where Γij
k = −g isΓj

sk .

The operator A1 is Hamiltonian if and only if the following conditions hold:

g ij = g ji ,

g ij
,k = Γij

k + Γji
k ,

g isΓjk
s = g jsΓik

s ,

R ij
hl = c.

Thus, g is a constant-curvature metric, and Γi
jk are the Christoffel symbols of the

corresponding Levi-Civita connection.
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First-order Hamiltonian operator

Second nonlocal generalisation of the standard Dubrovin–Novikov Hamiltonian operator
is of the form

Aij
1 = g ijDx + Γij

kuk
x + w i

k(u)uk
xD
−1
x ◦ w j

h(u)uh
x .

The operator A1 is Hamiltonian if and only if the following conditions hold:

g ij = g ji , g ij
,k = Γij

k + Γji
k , g isΓjk

s = g jsΓik
s ,

gikw k
j = gjkw k

i ,

∇kw i
j = ∇jw

i
k ,

R ij
hl = w i

l w j
h − w i

hw j
l .

Thus, the metric g and the affinor w satisfy the Gauss–Peterson–Codazzi equations for
hypersurfaces Mn in a pseudo-Euclidean space E n+1, that is, the metric gij plays the
role of the first quadratic form of Mn, and the affinor w i

j is the Weingarten operator.
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First-order Hamiltonian operator

Second nonlocal generalisation of the standard Dubrovin–Novikov Hamiltonian operator
is of the form

Aij
1 = g ijDx + Γij

kuk
x +

∑
α,β

cαβw i
αkuk

xD
−1
x ◦ w j

βhuh
x ,

where (cαβ) is a real symmetric matrix

The operator A1 is Hamiltonian if and only if the following conditions hold:

g ij = g ji ,

g ij
,k = Γij

k + Γji
k ,

g isΓjk
s = g jsΓik

s ,

gikw k
αj = gjkw k

αi ,

∇kw i
αj = ∇jw

i
αk ,

[wα,wβ ] = 0,

R ij
hl = cαβ

(
w i
αlw

j
βh − w i

αhw j
βl

)
.
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Tricks to simplify the computation of A1

Conjecture

Let the system of conservation laws admit a third-order Hamiltonian operator as above
parameterised by a Monge metric h with Monge decomposition

h = ΨΦΨ>,

where Φ is a constant matrix, and the entries of Ψ are linear in uk ’s. Then the metric g
defining the compatible Ferapontov-type first-order Hamiltonian operator is of the form

g = Ψ−1Q(Ψ−1)>, (g ij = ψi
αQαβψj

β),

where Q is a matrix whose entries are polynomials in uk of order at most 2.

Valid for many known examples [Opanasenko, Vitolo, 2024].

When computing with first-order homogeneous Hamiltonian operators it turns out that
it is more natural to use contravariant quantities. In particular, we will use the con-
travariant version of the Riemannian curvature:

R ijk
l = g isg jtRk

tsl = g is(∂lΓ
jk
s − ∂sΓjk

l ) + Γij
s Γsk

l − Γsj
l Γik

s .

For quasilinear systems:

g ikV j
k = g jkV i

k , ∇iV j
k = ∇jV i

k , [V ,wα] = 0.
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∇iV j
k −∇

jV i
k = 0,

In view of the fact that the system is written in a conservative form, this condition
simplifies to V s

k Γji
s − V j

s Γsi
k = 0, where Γij

k = −g isΓj
sk . It further simplifies to

ΓsijV k
s − ΓskjV i

s = 0, where Γijk = g isΓjk
i .

The simplification is related to the fact that in order to find Γijk one only needs to use
the higher-indices tensor g ij ,

Γlij =
1

2

(
g isg jl

,s + g lsg ij
,s − g jsg il

,s

)
,

which in applications happens to be much simpler than its lower-indices counterpart.

Lastly, to find constants cαβ we check the condition

R sij
l = g kscαβ(w j

αkw i
βl − w i

αkw j
βl),
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Running example, first-order Hamiltonian operator

Aij
1 = g ijDx + Γij

kuk
x +

3∑
α,β=0

cαβw i
αk(u)uk

xD
−1
x ◦ w j

βh(u)uh
x ,

where

(g ij) = (Ψ−1)Q(Ψ−1)>,

Φ is a constant matrix, and the entries of Ψ are linear in uk ’s,

Ψ =



u4

µ

u5

µ
1 0 0 0

0
u3

µ
0 −u5 1 0

−u5 −u2

µ
− u6 0 u4 0 1

−u1

µ
0 0 −u3 0 0

u3 −u1

µ
0 µu6 + u2 0 0

0 u3 0 −µu5 + 1 0 0


,
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Q11 = − 4

µ
u3u5 +

4

µ2
u1u4 + u2

6 , Q12 = − 2

µ
u3u6 +

4

µ2
u1u5,

Q13 = u1u5 −
1

µ
u3u6 + u2u3 +

2

µ
u1, Q14 = − 2

µ
(u2u5 − u4u3 + u6),

Q15 = −µu5u6 + u2u5 + u3u4 + u6, Q16 = µu2
6 + 2u3u5, Q22 =

2

µ2
(u1u6 − u2

3),

Q23 = − 2

µ
u1u2 + u2

3 , Q24 =
4

µ
u3u5 −

2

µ
u2u6 − u2

6 ,

Q25 = u3u5 −
1

µ
u1u4 −

2

µ
u3 −

1

µ
u2
2 , Q26 = − 1

µ
u1u5 + u3u6 −

1

µ
u2u3,

Q33 = µ2u2
3 − 2µu1u2, Q34 = −µu3u5 + u1u4 + u2

2 + 4u3,

Q35 = µ2u3u5 − µu1u4 − µu2
2 − µu3, Q36 = µ2u3u6 − µu1u5 − µu2u3 + u1,

Q44 = 2u4u6 − 2u2
5 , Q45 = −µu2

5 + 2u2u4 + 4u5,

Q46 = −µu5u6 + u2u5 + u3u4 + 3u6, Q55 = µ2u2
5 − 2µu2u4 − 2µu5 − 2,

Q56 = µ2u5u6 − µu2u5 − µu3u4 − µu6 + u2, Q66 = µ2u2
6 − 2µu3u5 + 2u3,

while the nonlocal part is defined by the matrixc11 c12 c13

c21 c22 c23

c31 c32 c33

 =

 0 −µ 0
−µ 0 0
0 0 µ2

 .
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Aij
1 = g ijDx + Γij

kuk
x + cαβw i

αk(u)uk
xD
−1
x ◦ w j

βh(u)uh
x ,

Aij
3 = Dx ◦ (hijDx + c ij

k uk
x ) ◦Dx .

Theorem

Let ui
th = (V i )tk be a family of commuting first-order WDVV systems, h = 2,. . . ,N,

h 6= k. If there is one value of h such that the first-order system is bi-Hamiltonian with
a pair of compatible Hamiltonian operators A1, A3, then all first-order WDVV systems
corresponding to all other values h are endowed with exactly the same bi-Hamiltonian
pair.

Proof

It is known for the first-order operator [Ferapontov, 1995].

himV m
j = hjmV m

i , V k
ij = hkscsmjV

m
i + hkscsmiV

m
j .

Compatibility of the operators A1 and A3 gives

himwm
αj = hjmwm

αi , w k
αi,j = hkscsmjw

m
αi + hkscsmiw

m
αj .
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Theorem

An invariance transformation of the WDVV equation preserves the form of the
Hamiltonian operators in a bi-Hamiltonian first-order WDVV system.

Proof

The symmetry group of a third-order WDVV projects to the symmetry
group GL(N − 1,C) of a first-order WDVV.

Lemma: invariance transformations that involve only two independent variables
preserve the form of the Hamiltonian operators [Vašiček, Vitolo, 2021].

Any matrix in GL(CN−1) can be generated by means of Gauss’ elementary matrices
(up to permutations).
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Future research

General “simplified” formula for WDVV system

Show that any first-order WDVV system is bi-Hamiltonian.
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Merci beaucoup!
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