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Witten—Dijkgraaf—Verlinde—Verlinde equations

The problem: in R” find a function F = F(t},...,t") such that

£ o.__OF : q .
(1] laf ‘= W = NMap CcoOnstant symmetric nondegenerate matrix

@ c; = 1" Feap structure constants of an associative algebra
Q F(chtt,... cWitN)y = c¥F(t!,...,t") quasihomogeneity (di = 1)
If e1,..., ey is the basis of R then the algebra operation is
€n €3 = Coz(t)ey  with unity e
The system of WDVV equations follows,

Sapyv 1= WMA(FAaBFAWV — FravFupy) = 0. (WDWV)
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Symmetries of WDVV

The WDVV system is invariant under linear change of transformations that preserves t*,
t'=ct with ¢ =6

With quasihomogeneity, if quasihomogeneity weights are distinct, the matrix 7. can
be reduced [Dubrovin, 1994] to

w0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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Symmetries of WDVV

The WDVV system is invariant under linear change of transformations that preserves t*,
= cj't’ with ¢ = 6].

With quasihomogeneity, if quasihomogeneity weights are distinct, the matrix 7. can
be reduced [Dubrovin, 1994] to

w0 0 1

0 0 10

= O

0 0
0 0

o =

Without quasihomogeneity, e.g. for n = 3, there are 4 canonical matrices [Mokhov,
Pavlenko, 2018],

0 0 1 1 0 1 1 0 1 1 0 0
0 x 0, o x o0, |00 1|, [0 X 0],
1 0 up 1 0 p 1 10 0 0 u
N =1, =1, N=1 =1
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Running example, WDVV with N =4

Saﬁw = nu/\(FkaﬁFuV’v - FAavFqu) =0.

How many independent equations are in WDVV system?

St. Opanasenko Bi-Hamiltonian geometry of WDVV equations 4/26



Running example, WDVV with N =4

Saﬁw = nu/\(FkaﬁFuV’v - FAavFqu) =0.

How many independent equations are in WDVV system?

phyz(frzz = fyzz) + 262 fz — fyy bz — fiyyfrzz = 0,
foy fyzz — Ptz — [ifazzfoyz + ooz + fugy Frzz + pifizzfysz — frpy = 0,
fog fyyze — Foetyy + hyzbxez — fifiyefyzz + frz = 0,
Foy frzz — P frzz — 2foxz bz + Fooclyaz 4+ pfy = 0,
fixe Fryy + 1iFozFrzz — Fyz e — iz iz + fizz = 0,
foxy gy + o fyyz — Foocfyyy — pifaye + 2fz = 0.
for Dubrovin normal form

0
77(2) —

HOoOOxX
o= OO
O O O

1
0
0
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Sapyv 1= WMA(FAOLBFMVW = FravFupy) = 0.

How many independent equations are in WDVV system?
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A
Sapyy = 0" (FrxapFuvy — FravFupy) = 0.
How many independent equations are in WDVV system?

First of all, Fianp = Map completely specifies the dependence of F on t!,

1 1\3 1 kr,1\2 1 s, k,1 2 N
F=- f§ 75 s (e, ..., tY).
6n11(t) +2 nt (t7) +2 sttt + (¢t t")

k>1 k,s>1
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Sapyv 1= WMA(FAOLBFMVW = FravFupy) = 0.
How many independent equations are in WDVV system?
First of all, Fianp = Map completely specifies the dependence of F on t!,
_1 13, 1 kpay2 L s, k1 2 N
F = 67]11(t ) +§Z771kt () +§ Z Nttt + (..., ).

k>1 k,s>1

Secondly, there are two apparent symmetries, Sagyv = Syvag and Savyg = —Sapyw-
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A
Sapyy = 0" (FrxapFuvy — FravFupy) = 0.
How many independent equations are in WDVV system?
First of all, Fianp = Map completely specifies the dependence of F on t!,
1 13, 1 kpay2 L s, k1 2 N
F=Znu(t = (¢t = A A N L §
67711( ) +2;771k (t) +2k§1nsk + f( )

Secondly, there are two apparent symmetries, Sagyv = Syvap and Savy8 = —Sagyw-

In particular, any combination of parameters containing 3 or 4 identical letters gives rise
to a trivial equation, and any equation with 2 identical letters can be brought to a form

Saa'yu-
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A
Sapyy = 0" (FrxapFuvy — FravFupy) = 0.
How many independent equations are in WDVV system?
First of all, Fianp = Map completely specifies the dependence of F on t!,

1 1\3 1 kr,1\2 1 s, k,1 2 N
F=- f§ 75 s (e, ..., tY).
6n11(t) +2 nt (t7) +2 sttt + (¢t t")

k>1 k,s>1

Secondly, there are two apparent symmetries, Sagyv = Syvap and Savy8 = —Sagyw-

In particular, any combination of parameters containing 3 or 4 identical letters gives rise
to a trivial equation, and any equation with 2 identical letters can be brought to a form
Saa’yu-

Lastly, choosing o € {2,..., N} we can find a subsystem of the above system that is

linear with respect to a-independent derivatives and solve it. The remaining equations
then vanish.
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Running example, WDVV with N =4

Consider the WDVV system,

(1Fyye(Froz — Fiz) + 2fpe Fe — Fpy Froe — By Bz = O,

fog fyzz — Foafyyz — fifazz ez + Frzz + fugy Frzz + pifizzfys — iy = 0,
Foy fyyz — Foxe by + iz fze — ifgefyez + frze = 0,

Foy Frzz — Bz Fozz — 2Fa gz + Foofyaz + pfis = 0,

Foe by + otz — Fya o — fifiz bz + fize = 0,

Fog Fryy + W fyyz — Fooctyy — s + 2fyz = 0.

for Dubrovin normal form

Choose a variable x and see that the latter 5 equations are linear wrt f,,,, f,yz, fyzz, fzzz.

St. Opanasenko Bi-Hamiltonian geometry of WDVV equations 6/26



Mokhov—Ferapontov trick

© Choose one distinguished independent variable th, k> 1 and all third-order
derivatives f, such as ox > 0; introduce new variables u' = f34,... 0),
= fi2,1,0,...0)v U= f(l,o,...,z), n= N(N - 1)/2-

@ Choose another independent variable th #* t“, h> 1 and find uih as the
t*-derivative of an expression V'

Uiy = V' (0) . (2)

There are two possibilities:
@ either Vi(u) is one of the coordinates «/, with j # k; ) _
@ V' is a third-order derivative of f which is not one of the /. In this case, V' must
be expressed by means of one of the equations of the WDVV system. This is always
possible due to the structure of the WDVV system.
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Geometric picture

{Sa,@—yy} C hKLE = (t)‘7 fg).
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Geometric picture

{Sa,(—}—yy} C hKLE = (t)‘7 fg).

Given JnE = (x*,vl), consider the jet bundle J;Jn,E with coordinates (x*, v;,V;'”)
where o, 7 € NV are multiindices such that |o|, |7| < m, and p is an index. Note that
in cases when o = p + 7 the coordinates v, and v,,, are in general different.
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Geometric picture

{Sa,(—}—yy} C hKLE = (t)‘7 fg).

Given JnE = (x*,vl), consider the jet bundle J;Jn,E with coordinates (x*, v;,v;"”
where o, 7 € NV are multiindices such that |o|, |7| < m, and p is an index. Note that

in cases when o = p + 7 the coordinates v, and v,,, are in general different.

Then, the sesquiholonomic jet bundle Jmi1E C hJmE is identified in coordinates as the
subspace

i =i
Vo = Vur,

for all o, 7 € NV, ol <m, pe€{l,...,N}, such that 0 = u + 7. So, the sesqui-
holonomic jet bundle can be endowed with coordinates (x*,vi, v/,.) where |o| < m,
|7| = m, and p is an index.
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Running example

Let us introduce new letters for third-order derivatives:

1 2

3
U = fox, U :f;o(y: u

5

6

4
= foz, U = f;<yy, u = f;(yu U = fi,

7 8 9 10
u :f;/}’}ﬂ u :fyy27 u :f;/zu u = Izzz.

We have the following compatibility relations:

d- d—u 2= i
uﬁzuﬁ w = ufzuy
Uy = uy u=ud ud = u
u;ful ut =8 uZ:uy
U}S/:Ug UEZUE Uf—u}g/
% S ST PR I B
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Running example

Let us introduce new letters for third-order derivatives:

1 2

3
U = fox, U :f;o(y: u

5 6

4
= foz, U = f;<yy, u = f;(yu U = fi,

7 8 9 10
u :f;/}’}ﬂ u :fyy27 u :f:vzu u = Izzz.

We have the following compatibility relations:

d- d—u 2= i
uﬁzuﬁ w = ufzuy
Uy = uy u=ud ud = u
u;ful ut =8 uZ:uy
U}S/:Ug UEZUE UE—U}Q/
% S ST PR I B

In general, a WDVV system in dimension N is equivalent to N—2 commuting hydrodynamic-
type systems.
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Consider two systems
u= (V) = (W)

Two such systems are said to commute if and only if the Jacobi bracket of the right-hand
sides vanishes: [V, W] = 0, where V = (V'),d,; and W = (W'),d,;. This is equivalent
to the requirement that W is a generalized symmetry of the system u}", = (V")X and
vice versa.

Definition

We say that a quasilinear first-order system of conservation laws (2) where (u') are
third-order derivatives of f and the equations are compatibility conditions for a WDVV
system to be a first-order WDVV system.
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Hamiltonian structures. Known results

N=3

1st Dubrovin normal form (1 = 0): local 3rd order + local 1st order [Ferapontov,
Galvao, Mokhov, Nutku, 1997]

2nd Dubrovin normal form (p # 0): local 3rd order + nonlocal 1st order [VasiZek,
Vitolo, 2021].

Mokhov—Pavlenko normal forms: local 3rd order + nonlocal 1st order [Vaitek, Vitolo,
2021].

All: local 3rd order + (non)local 1st order [VaSicek, Vitolo, 2021].

N=4

1st Dubrovin normal form (p = 0): local 3rd order + local 1st order [Ferapontov,

Mokhov, 1996], [Pavlov, Vitolo, 2015]
2nd Dubrovin normal form (u # 0): local 3rd order [Vagitek, Vitolo, 2021].

N=5
Dubrovin normal forms (u € {0, 1}): local 3rd order [Va3i¢ek, Vitolo, 2021].
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Third-order Hamiltonian operator

Third-order homogeneous Hamiltonian operator in a canonical Doyle-Potemin form is
AY =Dy o (WD + ¢/ uf) o D

Given cjix = highjpcl?, the skew-symmetry conditions and the Jacobi identities for the
operator above are equivalent to

1
Cskm = g(hsm,k - hsk,m)7

hmk,p + hkp,m + hmp,k =0

Cmsk,| = _qucpmlcqsk7
which implies that gj is a Monge metric,
gidu'd = aydu'de’ + by du' (v du® — u* A + (v’ ded — ddu’) (u*du' — u'du®).

Operator has a projective-geometric nature [Ferapontov, Pavlov, Vitolo, 2014].
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The metric f;j can be factorized [Balandin, Potemin, 2001] as
fi = Gasthi )’ (or, in a matrix form, f = wa) (3)

where ¢ is a constant non-degenerate symmetric matrix of dimension n, and

U = et wi
is a non-degenerate square matrix of dimension n, with the constants 1/1,7. and w) satis-
fying the relations
R —
ij Ji?
B B B
¢ﬁw(w;/ Jl + wj! wl,- + wkﬂp;)
B B B
bpy (W) by + Wi b + wi )
For the conservative system u; = (V/(u))x, the necessary and sufficient conditions to

admit the above Hamiltonian operator are

0,
0.

him Vi™ = hjim V",
V_k hkscsmj \/im + hkscsmi \/jm.

i =

Bi-Hamiltonian geometry of WDVV equations
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Running example, 3rd order Hamiltonian operator

h11 = Ui, h12 = ([LU5 — 2)U5, h13 = 2LI4(1 — ,LLU5),

his = pusus — urus — us, s = —plusus — p(uaus — Uz — uUg) + Uz,
e = (pus —1)%,  hoy = 2us(puus — 1),
ho3 = —uzusue — p(uous + usus — ug) + Uz,  hog = NU§7

hos = —pPusus — p(urus + wpus) + ug,  has = 2pus(pus — 1),

haz = N2(2U4U6 + u§) + 2u(wous — us) + 2,

hsa = —pPusus + p(urus — wus) — uy,  hss = p((pus + u2)® — ha),
hss = phys, has = U3, has = —2puurus,

hss = ,u2u32,, hss = ,u2(2u1uG + u§) + 2uu

hse = phos,  hes = 2u2U3(usu —1).
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First-order Hamiltonian operator

Standard Dubrovin—Novikov Hamiltonian operator is of the form
Al = gD, + F;{uf, where FZ = —g"Srf;k.

The operator A; is Hamiltonian if and only if the following conditions hold:
e
gl =ri+r.
g = T,
R} = 0.

Thus, g is a flat metric, and FJ"-k are the Christoffel symbols of the corresponding Levi-
Civita connection.
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First-order Hamiltonian operator

First nonlocal generalisation of the standard Dubrovin—Novikov Hamiltonian operator is
of the form

Al = g"Dy + Muf + culD 'uf, where T} = —g".

The operator A; is Hamiltonian if and only if the following conditions hold:
g’ =g,
g =T+
g i =g"re,
Rg, =c.

Thus, g is a constant-curvature metric, and I'J’:k are the Christoffel symbols of the
corresponding Levi-Civita connection.
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First-order Hamiltonian operator

Second nonlocal generalisation of the standard Dubrovin—Novikov Hamiltonian operator
is of the form

AV = gD, + TTuf 4+ wi(u)uf Dt o wi(u)ul

The operator A; is Hamiltonian if and only if the following conditions hold:
g'=g' gi=Ti+N, &Ti=g"T,
k k
BikWj = gjkW; ,
VkW = VJ Wk7
R = wiwj — wyw].
Thus, the metric g and the affinor w satisfy the Gauss—Peterson—Codazzi equations for

hypersurfaces M" in a pseudo-Euclidean space E™™, that is, the metric g; plays the

role of the first quadratic form of M", and the affinor wj’ is the Weingarten operator

St. Opanasenko
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First-order Hamiltonian operator

Second nonlocal generalisation of the standard Dubrovin—Novikov Hamiltonian operator
is of the form

AV = gD, 4Ty k+2caﬂw DY o wl, ul,

where (c®?) is a real symmetric matrix
The operator A; is Hamiltonian if and only if the following conditions hold:
g' =g,
gh =T+
g% = g™,
K K
BikWaj = BjkWaisy
VkW(;j = VJ‘W‘;,”
[WOH WB] = 07
Ri = caﬁ(W;,W;ﬁ - (;hwg,,).
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Tricks to simplify the computation of A;

Conjecture

Let the system of conservation laws admit a third-order Hamiltonian operator as above
parameterised by a Monge metric h with Monge decomposition

h=wow,

where ® is a constant matrix, and the entries of W are linear in ux’'s. Then the metric g
defining the compatible Ferapontov-type first-order Hamiltonian operator is of the form

g=v1Q )", (¥ = v, ),

where @ is a matrix whose entries are polynomials in ux of order at most 2.

Valid for many known examples [Opanasenko, Vitolo, 2024].
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Tricks to simplify the computation of A;

Conjecture

Let the system of conservation laws admit a third-order Hamiltonian operator as above
parameterised by a Monge metric h with Monge decomposition

h=wow,

where ® is a constant matrix, and the entries of W are linear in ux’'s. Then the metric g
defining the compatible Ferapontov-type first-order Hamiltonian operator is of the form

g=v1Q )", (¥ = v, ),

where @ is a matrix whose entries are polynomials in ux of order at most 2.

Valid for many known examples [Opanasenko, Vitolo, 2024].

When computing with first-order homogeneous Hamiltonian operators it turns out that
it is more natural to use contravariant quantities. In particular, we will use the con-
travariant version of the Riemannian curvature:

R;'jk — g gRK, = giS(aI[—j;k _ asrjl'k) sk _ rijrgk'
For quasilinear systems:

g Vi=g"Vv, VIVI=VV] [V,w.]=0.
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ViV -VV, =0,

In view of the fact that the system is written in a conservative form, this condition
simplifies to VY — VI =0, where [} = —g®I”, . It further simplifies to

FIVE—THV =0, where T =g

The simplification is related to the fact that in order to find % one only needs to use
the higher-indices tensor g”,

rli — % (gisg’j;+gls i _ gl ,/)

which in applications happens to be much simpler than its lower-indices counterpart.
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ViV -VV, =0,

In view of the fact that the system is written in a conservative form, this condition
simplifies to VY — VI =0, where [} = —g®I”, . It further simplifies to

FIVE—THV =0, where T =g

The simplification is related to the fact that in order to find % one only needs to use
the higher-indices tensor g”,

.1 P
r’lj _ E (glsg’/; +g_/s ij g/s II)
which in applications happens to be much simpler than its lower-indices counterpart.

Lastly, to find constants c®? we check the condition

. B S o
R =g scaﬁ(wékwﬁlﬂ - Wcl‘kaé/)a
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Running example, first-order Hamiltonian operator

3
Al = gD+ T+ > P wiy(u)uDyt o why (u)uf,
a,3=0

where
if -1 —1\T
() =)W ),
® is a constant matrix, and the entries of W are linear in uy's,

Ug us

— 1 0 0 0

H I
0 & 0 —us 1 0

UQM
\U _ —Us — — Us 0 Ua 0 1

= N L ,
—-— 0 0 —us 0 0
1 "

u3 —; 0 pus+uw 0 O
0 u3 0 —pus+1 0 O
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4 4 2 4
Q11:—7U3U5+7U1U4+U§, Q12=—*U3U6+*2U1U57
12 I 12

1 2 2
Q¥ = wus — ;uwe + tpus + Euh Q" = —;(uzuza — Usuz + Us),

2
QY = —pusus + vpus + usug + us, Q' = pug +2usus, QP = E(m% - u3),

2 4 2
QP =-Zunw+u3, Q= "uus— Zwus— g,
o j j

1 2 1 1 1
Q® = wsus — —wius — “us — —13, Q% = —uus + usus — — wpus,
w 2 I I W

Q¥ = 25 — 2uunw, Q* = —pusus + urus + U3 + dus,

Q% = pPusus — punus — pus — pus, Q¥ = plusus — purus — pusus + uy,
Q" = 2ugue — 202, Q¥ = —,uug + 2upug + 4us,

Q46 = —uusus + urus + usus + 3us, QSS = ;ﬁu?, —2utous — 2uus — 2,
QR = jPusus — pupus — pusug — puus + vz, Q% = puf — 2uusus + 2us,

while the nonlocal part is defined by the matrix

noo2 3 0 -u 0
A2 ABl=|-y 0 o
C31 C32 C33 0 0 M2
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AV = gD, + TTuf 4 c*Pwly (u)ufD o Wéh(u)u:’
A = Dy o (h"Dx + ¢/ uf) o Ds.

Theorem

Let ul, = (V') be a family of commuting first-order WDVV systems, h = 2,...,N,

h # k. If there is one value of h such that the first-order system is bi-Hamiltonian with
a pair of compatible Hamiltonian operators A;, As, then all first-order WDVV systems
corresponding to all other values h are endowed with exactly the same bi-Hamiltonian

pair.

| A

Proof

It is known for the first-order operator [Ferapontov, 1995].
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AV = gD, + TTuf 4 c*Pwly (u)ufD o Wéh(u)u:’
A = Dy o (h"Dx + ¢/ uf) o Ds.

Theorem

Let ul, = (V') be a family of commuting first-order WDVV systems, h = 2,...,N,

h # k. If there is one value of h such that the first-order system is bi-Hamiltonian with
a pair of compatible Hamiltonian operators A;, As, then all first-order WDVV systems
corresponding to all other values h are endowed with exactly the same bi-Hamiltonian

pair.

| A

Proof

It is known for the first-order operator [Ferapontov, 1995].

him V" = himVI", Vi = B com V™ + B comi V™.
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AV = gD, + TTuf 4 c*Pwly (u)ufD o Wéh(u)u:’
A} = Do (h'Dx + ¢/ uf) 0 Dy

Theorem

Let uj, = (V') be a family of commuting first-order WDVV systems, h = 2,... N,

h # k. If there is one value of h such that the first-order system is bi-Hamiltonian with
a pair of compatible Hamiltonian operators A;, As, then all first-order WDVV systems
corresponding to all other values h are endowed with exactly the same bi-Hamiltonian

pair.

Proof

It is known for the first-order operator [Ferapontov, 1995].

| A

hin V" = him Vi, Vi = B comi V™ + B comi V™.
Compatibility of the operators A; and As gives

m k
hi qu jim Wiy Waij = h CsnuWa/ + h Csmi W, og
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An invariance transformation of the WDVV equation preserves the form of the
Hamiltonian operators in a bi-Hamiltonian first-order WDVV system.

Proof

The symmetry group of a third-order WDVV projects to the symmetry
group GL(N — 1,C) of a first-order WDVV.

| A\
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An invariance transformation of the WDVV equation preserves the form of the
Hamiltonian operators in a bi-Hamiltonian first-order WDVV system.

Proof

| A\

The symmetry group of a third-order WDVV projects to the symmetry
group GL(N — 1,C) of a first-order WDVV.

Lemma: invariance transformations that involve only two independent variables
preserve the form of the Hamiltonian operators [Vasitek, Vitolo, 2021].
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An invariance transformation of the WDVV equation preserves the form of the
Hamiltonian operators in a bi-Hamiltonian first-order WDVV system.

Proof

| A\

The symmetry group of a third-order WDVV projects to the symmetry
group GL(N — 1,C) of a first-order WDVV.

Lemma: invariance transformations that involve only two independent variables
preserve the form of the Hamiltonian operators [Vasitek, Vitolo, 2021].

Any matrix in GL(C"~!) can be generated by means of Gauss' elementary matrices
(up to permutations).
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Future research

o General “simplified” formula for WDVV system
@ Show that any first-order WDVV system is bi-Hamiltonian.
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Merci beaucoup!
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