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Motivations

Vertex algebras play an important role in many areas of Mathematics

e moonshine conjectures [Borcherds, Frenkel-Lepowsky-Meurman]
e integrable hierarchies [Drinfeld-Sokolov, De Sole-Kac-Valeri,...]
e geometric Langlands program [Frenkel-Gaitsgory,...]

e instanton moduli spaces, cohomological Hall algebras
[Braverman-Finkelberg-Nakajima, Rap&ak-Soibelman-Yang-Zhao]

They also appear in Physics in particular in 2-dim CFT and string theory: they
formalize the notion of symmetry algebra extending the conformal symmetry
(Virasoro algebra).

[Borcherds'86] Vertex algebras can be viewed as a generalization of enveloping
algebras for Lie algebras:

vertex algebra V ‘ associative algebra A
Vacuum |0) Unit 1
Y(,z): VXV —=V(z) | Producto: Ax A— A
Translation op. 0 Derivation d



Affine vertex algebras

Let g = Lie(G) be finite dimensional Lie algebra over C and consider the affine
Kac-Moody Lie algebra

9=0®Clz,z '] ®CK = g[z,z '] ® CK,

[K, 5] =0 and [xz",yz"] = [x,y]z™"" + m(x|y)SminoK,
with x,y €g, myn€Z, (| )= 2,%vKilling and h" the dual Coxeter number.

It is a central extension over the loop algebra:
0-C—g—glz,z']—0.
For k € C, we associate the affine vertex algebra

V¥(g) := U(8) Qu(giamck) Ck ~ U(g @ 2 'C[z7"]),

where Cy is a 1-dimensional representation of g[t] & CK on which g[t] acts
trivially and K acts as kldc, .



An example: V*(sly)

Consider sl, = Vect{e, h, f},

e:01,h:10,f:00,
0 0 0 -1 10

where [x,y] = xy — yx (x,y € sb).

V¥(sl2): one object, three approaches

10)
If) |h) le) f(2)
|of) 0:f(z)
states |x) modes x, € End(V*(sl,)) fields x(z) = Zx,,z n=1

n€Z

modes actions x,|0) Lie bracket [xy, ym] OPEs x(z)y(w)



Representations & Zhu'’s algebra

The representation theory of V*(g) captures the smooth g-modules at level k:

V¥(g)-Mod = {M | a(z)v € M((2))} C Gk-Mod.

Moreover, Z>o-graded rep., irreducible objects are in one-to-one
correspondence with irreducible representations of Zhu(V*(g)) ~ U(g):

U(g)-Mod — V*(g)-Mod, L(\) — Li(N).
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Whittaker models

Let f € g nilpotent and consider the finite \W-algebra U(g, f):

Ula. £) = (U(@)/Z:)** =~ Homuge)(U(a)/Zx, U(8)/T,)
where Z,, = (a— x(a) | a € g+).
U(g, f) acts on the (twisted) invariants M% X of a g-module M

~ Skryabin's equivalence: U(g) -Mod®+* = U(g, f)-Mod.
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Whittaker models

Let f € g nilpotent and consider the finite \W-algebra U(g, f):
Ule, F) = (U(8)/T)™ = Homugey (U(8)/Zx, U(8)/Zx),
where Z,, = (a— x(a) | a € g+).
U(g, f) acts on the (twisted) invariants M% X of a g-module M
~ Skryabin's equivalence: U(g) -Mod®+* = U(g, f)-Mod.

e In the affine setting, definition more subtle [Gaitsgory et al.], but for regular
nilpotent f., we have an equivalence [Raskin'16]

Whitee(V¥(g) -Mod) ~ “W*(g, focg) -Mod "
e Similarly for local fields (F = Q, or Z,((2))), they are used to study
G(F)-modules (take Fun(G(F)) rather than U(g(F))).

In particular, Whittaker models Whit.cg (Fun(SL,(F))) := Wo, ~ Z"(C) can be
generalized to @y, A € P(n) and [Gomez-Gourevitch-Sahi'17]

Wo, ~ I ...TM(C).

Works in that direction for finite W-algebras too [Morgan'14, Genra-Juillard’23]. 5



Conjecture and webs of V-algebras

Conjecture
SidA=(M,...,A) € P(n), WX(sln, f) = Ha,Ha, ... Ha, (VX(sln)).

Proved for N < 5 [Creutzig-F.-Linshaw-Nakatsuka’24].



Conjecture and webs of V-algebras

Conjecture
SidA=(M,...,A) € P(n), WX(sln, f) = Ha,Ha, ... Ha, (VX(sln)).

Proved for N < 5 [Creutzig-F.-Linshaw-Nakatsuka'24].
Conjecture supported by Yang-Mills theories:

Vertex algebras can be obtained from higher-dimensional gauge theories along
2D boundaries. In particular, gluing certain 4D Yang-Mills theories with
3D+2D boundaries, we can obtain W-algebras [Gaiotto-Rap&ak'18].

[Prochazka-Rap&ak'18] obtained more W-algebras, starting with webs of interfaces.



W-algebras [Feigin-Frenkel,’90 & Kac-Roan-Wakimoto,’03]

Let AV be the set of nilpotent elements in sl,. It is a finite union of disjoint
orbits Of := SL,.f (f € N') parameterized by the poset P(n):

@@]Bﬂaj

S (O)mm S (O){Q 2} X @bub g @Ieg

To each orbit @, corresponds an (affine) //-algebra obtained from V*(sl,) by
the BRST reduction:

W¥(sl,, @x) = HS(V*(s1,)).

Zhu

VA (sl,) U(sly) —2— C[sl,]

H (/)" | //x(SLn)+
Wk(g[,,,@,\) — U(S[n, f>\) — (C[Sfx]

where 8¢ = f + (s1,)¢ is the Slodowy slice of f. 7



Example: V*(sl,) and Vir®

For V¥(sl»), gauge condition by setting e(z) to be a constant. Implemented by
constructing a BRST differential (d = : (e(z) + 1)¢(z) :) and computing its
cohomology.
The result is the Virasoro vertex algebra Vir, strongly generated by the field
L(z) =, ., Loz~ "7 satisfying the commutation relations

3

[Lm Lo] = (m — n)Longn + %&m,ock,

where ¢, is the central charge.



Example: V*(sl,) and Vir®

For V¥(sl»), gauge condition by setting e(z) to be a constant. Implemented by
constructing a BRST differential (d = : (e(z) + 1)¢(z) :) and computing its
cohomology.
The result is the Virasoro vertex algebra Vir, strongly generated by the field
L(z) =, ., Loz~ "7 satisfying the commutation relations

3

[Lm7 Ln] = (m - n)Lm+n + %am‘“’,ockv

where ¢, is the central charge.

V¥ (slp) U(sl2) C[slo]
H? -/T)™ //x Ny

f

Vir% — Z(sh) ~ C[c] — C[x]



Reduction of the affine subalgebra [creutzig-F.-Linshaw-Nakatsuka24]

Example with sly: E:‘ — EE‘

For almost all k € C, we have conformal embeddings

(L, Ws) ® V' (sk) @ H — W (sla, Oz 12y)
(L, Ws) ® Vir™ ! @ H — W*(sls, 02,0y),

where (L, Ws) ~ (L, Ws) ~ Com (V***(gl,), W*(sls, 0y, 12;)) when k ¢ Q.

Apply HS to the affine part of Wk(5[4,©{2,12}) gives

HS (W¥(sla, Opz12y)) = W¥(sla, 0p2y).



Reduction of the affine subalgebra [creutzig-F.-Linshaw-Nakatsuka24]

Example with sly: E:‘ — EE‘

For almost all k € C, we have conformal embeddings

(L, Ws) ® V' (sk) @ H — W (sla, Oz 12y)
(L, Ws) ® Vir™ ! @ H — W*(sls, 02,0y),

where (L, Ws) ~ (L, Ws) ~ Com (V***(gl,), W*(sls, 0y, 12;)) when k ¢ Q.

Apply HS to the affine part of Wk(5[4,©{2,12}) gives

HS (W¥(sla, Opz12y)) = W¥(sla, 0p2y).

Works similarly with sls: @ — Hﬂ] and E:‘ — E}

HS (W¥(sls, O312y)) = W¥(sls, Op2.31)

H?2,1}(Wk(5[5: @{2,13})) = Wk(5[57 @{22,1})-



Structure of W-algebras

Conjecture [CFLN'24]
Let A = {A1,...,Xe—1,A\¢} € P(n), then there is a conformal embedding

)

Iterating, we get that W-algebras decompose as product of affine cosets

Com (vk“ (gl,n), W (sl,, f{n,m,lm})) :
Surprisingly, affine cosets are all obtain as quotients of the same W,.-algebra
W(2,3,...,) [Linshaw'21], which is conjecturally isomorphic to the affine

Yangian of gl; ~ C.

10



Hamiltonian reductions and representations

Recall: Zxo-graded V*(sl,)-modules are the same as modules of U(sl,).
Rep. theory of the simple quotient Vi (sl,) of V¥(sl,) is more complicated.

When k € Z>o, Vi(sly) is rational: category of hw modules is finite and
semisimple, simple objects are the integrable rep. [Frenkel-Zhu'92].
They generate a modular tensor category [Huang'08].

11
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When k is admissible (i.e. k+n=p/q, p>=n, g > 1) not in Z:
Simple hw Vi (sl,)-modules are admissible rep. They still satisfy modularity
properties [Kac-Wakimoto'88] but they are not stable under fusion product.

~» modularity explained by rationality of the simple W-algebra Wi (sl,, Ogs ). 11



For k = —n+ p/q admissible, Wk(ﬁ[n, @{qsy,}) is rational [Arakawa-van Ekeren'19]
and HY : Vi(sl,)-Mod — Wi(sla, ©y)-Mod is a surjective functor that maps
irreducible on irreducible (or 0).

However, it is not injective so we need to start with a bigger category of
modules in Vi(sly).

~~ Relaxed modules [Feigin-Semikhatov-Tipunin’98]: it is not required to have a
vector annihilated by root vectors of the Lie algebra of zero modes (~~ sl,) in
the top space.

12



Relaxed modules

For k = —n+ p/q admissible, Wk(ﬁ[n, @{qsy,}) is rational [Arakawa-van Ekeren'19]
and HY : Vi(sl,)-Mod — Wi(sla, ©y)-Mod is a surjective functor that maps
irreducible on irreducible (or 0).

However, it is not injective so we need to start with a bigger category of
modules in Vi(sly).

~~ Relaxed modules [Feigin-Semikhatov-Tipunin’98]: it is not required to have a
vector annihilated by root vectors of the Lie algebra of zero modes (~~ sl,) in
the top space.

Ex: for Vi(sk), k=—-2+2, (p,q > 2)

Li() D (V) Dy (M) &)

[Creutzig-Ridout'13, Kawasetsu-Ridout'19]: relaxed Vk(slz)—modules generate a
modular tensor category.

12



Inverse Hamiltonian reduction

ChIELN](z: ) = 3 2" dimfEL(Wlh 1y = 2> 2 l(E)

where L, (Ax ) is a Virasoro minimal model [Kawasetsu-Ridout'19].

5(z7),

2
For ck = cpq=1— 6%, Vir,, is rational [Wang'93]. lIts irred. Z>o-graded
rep. are exactly the Virasoro minimal models {£L, (Ax )}

13



Inverse Hamiltonian reduction

ch[ENI(z0) = 3 2706 dim[Ec(Nlhm.co = z’\w&z“),

where L, (Ax ) is a Virasoro minimal model [Kawasetsu-Ridout'19].

For ck = cpq=1— 6%, Vir,, is rational [Wang'93]. lIts irred. Z>o-graded
rep. are exactly the Virasoro minimal models {£L, (Ax )}
There is a conformal embedding [Semikhatov’'94]
VE(slp) — Vir* @ My
k -
e(z) — e(2), h(z)— §c(z) +d(z), f(z)—~(k+2):L(z)e (2):+...

preserved by taking simple quotients for k = —2 + g ¢ 7 admissible
[Adamovi¢'17].

Relaxed Vi(sl>)-modules are reconstructed from L, (Ax «):

SN ~ Lo (Ar) @M, [N € C/Z.

In particular, modularity of relaxed Vi(sl>)-modules is deduced from modularity
of Virasoro minimal models. 1e



More modularity & inverse reductions

Wk(sla,0) ~ V(slo) Wk(sls,0) ~ V¥(sl3)
J/ Adal9, J/
ACG22
Sem94
Wk (sla, fieg) ~ Vir* Wk (sls, foun) ~ W¥(sl3, finin)

AKR21
Wk(5[37 freg)

Using explicit embeddings, modularity of relaxed modules has been checked for
k = =3+ p/q admissible:

o [Fehily-Ridout'22]: Wi(sl3, fmin), g = 3 i.e. Wi(sls, freg) rational,

e [F-Raymond-Ridout'24]: V*(sl3), ¢ = 2 i.e. Wi(sls, fonin) rational, using

Vk(5[3) — Wk(5[3, ©sub) ® B’y ® Mz [Adamovi¢-Creutzig-Genra'22].

14



Generalizing inverse Hamiltonian reductions

Nilpotent orbits of sl, are partially ordered:

E< Eﬁ HH < H 4 EEEE

Idea: If Ox < O,/ (4 conditions) then

W¥(sl,, ©5) — W¥(sl,,0,) ® free fields.

15



Generalizing inverse Hamiltonian reductions

Nilpotent orbits of sl, are partially ordered:

E< Eﬁ HH < H 4 EEEE

: If Ox < Oy (+ conditions) then

W¥(sl,, ©3) — W*(sl,,0x) ®

Theorem [Fehily'23]

IHR between hook-type partitions. For m’" < m

N

n,
W (sln, Oy 10-mry) = WE(5ln, Oy 10-my) ® V
where V = g7y®° @ N*.

15



Inverting the partial reduction

Example with sls: E:‘ — EE‘

For almost all k € C, we have conformal embeddings
(L, Wa) ® VK (sk) @ H — W¥(sla, O, 121)
(L, Ws) ® Vir st @ H < W*(sla, 0(2,0y),

Extend V¥ (slp) < Vir®+ ® Mz gives
W (sla, 0p2,123) = W¥(sla, 0yp2,23) ® Mz.

Similarly with sls: E h_Hﬂ:‘ and Ejh_ﬁa

Wk(5[5, @{3’12}) ‘—)Wk(5[57@{3,2}) ® MNz.
W¥(sls, Oz.13)) = W*(sl5, 022 1y) ® By ® Mz.

16



Inverting the partial reduction

Example with sls: E:‘ — EE‘

For almost all k € C, we have conformal embeddings
(L, Ws) ® V! (sk) @ H — W (sl, Opp12y)
(L, Ws) ® Vir st @ H < W*(sla, 0(2,0y),
Extend V¥ (slp) < Vir®+ ® Mz gives
W (sla, 0p2,123) = W¥(sla, 0yp2,23) ® Mz.

Similarly with sls: E h_Hﬂ:‘ and Ejh_ﬁa

Wk(5[5, @{3712}) ‘—)Wk(5[57@{3,2}) ® M.
W¥(sls, Oz.13)) = W*(sl5, 022 1y) ® By ® Mz.

Conjecture
For A= {A1 > ... > A\¢} € P(n). There is a conformal embedding

W (sln, Oy apitmy) = Wo(sln, Oy, x r1amm1y) ® Mz @ By®72) 16



General pattern & Rationality

o MH; 11\;_\
4 ¢ -+ o Hrrp+ 0o

N @ KEBH

g=1 q=2 qg=3 q=4 q=5 q

WV
o

Partial /inverse reductions provide paths to connect V/(sl,) to rational
W-algebras.

Actually, we have more connections of W-algebras coming from nilpotent orbit
closures relation [Beem-Buston-Nair, Genra-Juillard, F.-Fehily-Fursman-Nakatsuka, works in

progress).

17



More partial /inverse reductions F.-Fenily-Fursman-Nakatsuka]

W¥(slq,0) ~ V¥(sly)
W¥(sl3,0) ~ V¥(sl3) l

J/ Wk(5[47 fmin)

Wk(5[37 f;ub) = Wk(5[37 fmin) CFLN'24
J/ Madsen Ragoucy '97 Wk(5[4, f2’2)
Wk(s[e,, freg) FFFN
. k
: reduction of affine subalgebra. w (5[47 fsub)
—: reduction of a natural representation for
FFFN
the affine subalgebra.

Wk(5[47 fre%)
Ex: W¥(sl3, foup,) is strongly generated by fields H, L, G™, G.
G* gen. a 1-dim natural rep. of H ~ HY(W*(sls, fiup)) ~ W*(sl3, freg).

18



Relaxed modules for V(sl3)

Vi(slz3) — Wi(sl3, Osun) ® By @ Mz

For g =2, i.e. k=—3+ 5 with p=3,5,..., Wi(sl3, Osup) is rational.

| Wilsh, fn) | By | n
+ hw mod hw mod relaxed mod

HE (L) (e i % My (W] € ©/2)

hw mod relaxed mod relaxed mod

s

HY (L(A)) (r € P73 | Wi (1 € ©/20{10]}) | My (W] € €/2)

1 2 3 X2 A+lle+ll+ll+ll+1
1 2 3 X A+l . . l+ll+ll+ll+ll+ll+1
1 2 3 pYs )z+1/\z+l. .,\;+1A;+1A;—1A2+1Az+1,\z+1Az+1.
1 2 3 X de+ll+ll+1 N+lh+ll+lh+lh+1lh+10+1d+1
1 2 3 X detllt+ll+ll+l --- R L R PRSI DY DS DI DI DS B
2 3 X dtllt+ll+1lXk+l N+lh+ll+ll+ll+ll+1h+1d+1
3 N dtll+ll+lh+1 D+ll+ll+ll+lh+1h+1d+1
X dtll+ll+1h+1 Dtll+ll+ll+1l+10+1 .

de detlla+lle+1X+1 Atll+ll+1d+1X+1 19



k=—-3+% with g >3

Wi (513, Osub) By Mz
hw mod hw mod rel mod
CHLLLO) erty | v My (Pl e/2)
hw mod rel mod rel mod
HR (L) (e P | Wi (1l € c/z\ (o) | My (W] € ©/2)
rel mod

Ae+1ld+1d+1ll+1r+1
A+ll+l o+l h+1+10+1
A+l +1lX+1X+1l+1A+1A+1

AN+l +l+1+1+1d+1d+1+1

s tlltll+llt+l+ll+ld+1A+1A+1 -0

t+ll+ll+ll+1ll+1l+1ll+1l+1
A+ll+ll+ll+l+1ll+1A+1
A+ll+ll+ll+1ll+1x+1

Ae4+1ld+1d+1ll+1+1

hw@rél@rel

reI@réI@rel 20



