Connecting W-algebras and their representations

Integrable systems and automorphic forms, Lille

Justine Fasquel
University of Melbourne

w./ T. Creutzig, A. Linshaw, S. Nakatsuka

May 2024

ref: arXiv:2403.08212

Motivations

Vertex algebras play an important role in many areas of Mathematics

- moonshine conjectures [Borcherds, Frenkel-Lepowsky-Meurman]
- integrable hierarchies [Drinfeld-Sokolov, De Sole-Kac-Valeri,...]
- geometric Langlands program [Frenkel-Gaitsgory,...]
- instanton moduli spaces, cohomological Hall algebras
 [Braverman-Finkelberg-Nakajima, Rapčák-Soibelman-Yang-Zhao]

They also appear in Physics in particular in 2-dim CFT and string theory: they formalize the notion of symmetry algebra extending the conformal symmetry (Virasoro algebra).

[Borcherds'86] Vertex algebras can be viewed as a generalization of enveloping algebras for Lie algebras:

vertex algebra $\it V$	associative algebra A	
$Vacuum 0\rangle$	Unit 1	
$Y(\cdot,z):V\times V\to V(\!(z)\!)$	Product $\circ: A \times A \rightarrow A$	
Translation op. ∂	Derivation d	

1

Affine vertex algebras

Let $\mathfrak{g}=\mathsf{Lie}(G)$ be finite dimensional Lie algebra over $\mathbb C$ and consider the affine Kac-Moody Lie algebra

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[z, z^{-1}] \oplus \mathbb{C}K = \mathfrak{g}[z, z^{-1}] \oplus \mathbb{C}K,$$

$$[K,\widehat{\mathfrak{g}}] = 0$$
 and $[xz^m, yz^n] = [x, y]z^{m+n} + m(x|y)\delta_{m+n,0}K$,

with $x, y \in \mathfrak{g}$, $m, n \in \mathbb{Z}$, $(\mid \cdot) = \frac{1}{2h^{\vee}}$ Killing and h^{\vee} the dual Coxeter number.

It is a central extension over the loop algebra:

$$0 \to \mathbb{C} \to \widehat{\mathfrak{g}} \to \mathfrak{g}[z, z^{-1}] \to 0.$$

For $k \in \mathbb{C}$, we associate the affine vertex algebra

$$V^{k}(\mathfrak{g}):=U(\widehat{\mathfrak{g}})\otimes_{U(\mathfrak{g}[z]\oplus\mathbb{C}K)}\mathbb{C}_{k}\simeq U(\mathfrak{g}\otimes z^{-1}\mathbb{C}[z^{-1}]),$$

where \mathbb{C}_k is a 1-dimensional representation of $\mathfrak{g}[t] \oplus \mathbb{C}K$ on which $\mathfrak{g}[t]$ acts trivially and K acts as $k \operatorname{Id}_{\mathbb{C}_k}$.

An example: $V^k(\mathfrak{sl}_2)$

Consider $\mathfrak{sl}_2 = \text{Vect}\{e, h, f\},\$

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

where [x, y] = xy - yx $(x, y \in \mathfrak{sl}_2)$.

 $V^k(\mathfrak{sl}_2)$: one object, three approaches

Representations & Zhu's algebra

The representation theory of $V^k(\mathfrak{g})$ captures the smooth $\widehat{\mathfrak{g}}$ -modules at level k:

$$V^k(\mathfrak{g})\operatorname{\mathsf{-Mod}}=\{M\mid a(z)v\in M(\!(z)\!)\}\subset \widehat{\mathfrak{g}}_k\operatorname{\mathsf{-Mod}}.$$

Moreover, $\mathbb{Z}_{\geqslant 0}$ -graded rep., irreducible objects are in one-to-one correspondence with irreducible representations of $\mathrm{Zhu}(V^k(\mathfrak{g})) \simeq U(\mathfrak{g})$:

$$U(\mathfrak{g})\operatorname{\mathsf{-Mod}} \longrightarrow V^k(\mathfrak{g})\operatorname{\mathsf{-Mod}}, \quad \mathcal{L}(\lambda)\longmapsto \mathcal{L}_k(\lambda).$$

4

Representations & Zhu's algebra

The representation theory of $V^k(\mathfrak{g})$ captures the smooth $\widehat{\mathfrak{g}}$ -modules at level k:

$$V^k(\mathfrak{g})\operatorname{\mathsf{-Mod}}=\{M\mid a(z)v\in M(\!(z)\!)\}\subset \widehat{\mathfrak{g}}_k\operatorname{\mathsf{-Mod}}.$$

Moreover, $\mathbb{Z}_{\geqslant 0}$ -graded rep., irreducible objects are in one-to-one correspondence with irreducible representations of $\mathrm{Zhu}(V^k(\mathfrak{g})) \simeq U(\mathfrak{g})$:

$$U(\mathfrak{g})\operatorname{\mathsf{-Mod}} \longrightarrow V^k(\mathfrak{g})\operatorname{\mathsf{-Mod}}, \quad \mathcal{L}(\lambda)\longmapsto \mathcal{L}_k(\lambda).$$

$$V^k(\mathfrak{g}) \xrightarrow{\mathsf{Zhu}} U(\mathfrak{g}) \xrightarrow{\mathsf{gr}} \mathbb{C}[\mathfrak{g}]$$

4

Whittaker models

Let $f \in \mathfrak{g}$ nilpotent and consider the finite W-algebra $U(\mathfrak{g}, f)$:

$$U(\mathfrak{g},f)\simeq (U(\mathfrak{g})/\mathcal{I}_\chi)^{\mathfrak{g}_+}\simeq \mathsf{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g})/\mathcal{I}_\chi,U(\mathfrak{g})/\mathcal{I}_\chi),$$

where
$$\mathcal{I}_{\chi} = \langle a - \chi(a) \mid a \in \mathfrak{g}_{+} \rangle$$
.

 $U(\mathfrak{g},f)$ acts on the (twisted) invariants $M^{G_+,\chi}$ of a \mathfrak{g} -module M

 \leadsto Skryabin's equivalence: $U(\mathfrak{g})$ -Mod $^{G_+,\chi} \stackrel{\sim}{\longrightarrow} U(\mathfrak{g},f)$ -Mod.

Whittaker models

Let $f \in \mathfrak{g}$ nilpotent and consider the finite W-algebra $U(\mathfrak{g}, f)$:

$$U(\mathfrak{g},f)\simeq (U(\mathfrak{g})/\mathcal{I}_\chi)^{\mathfrak{g}_+}\simeq \mathsf{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g})/\mathcal{I}_\chi,U(\mathfrak{g})/\mathcal{I}_\chi),$$

where $\mathcal{I}_{\chi} = \langle a - \chi(a) \mid a \in \mathfrak{g}_{+} \rangle$.

 $U(\mathfrak{g},f)$ acts on the (twisted) invariants $M^{G_+,\chi}$ of a \mathfrak{g} -module M

 \leadsto Skryabin's equivalence: $U(\mathfrak{g})$ -Mod^{G_+,χ} $\stackrel{\sim}{\longrightarrow}$ $U(\mathfrak{g},f)$ -Mod.

ullet In the affine setting, definition more subtle [Gaitsgory et al.], but for regular nilpotent $f_{\rm reg}$, we have an equivalence [Raskin'16]

$$\mathsf{Whit}_{\mathrm{reg}}(\mathit{V}^{\mathit{k}}(\mathfrak{g})\operatorname{\mathsf{-Mod}})\simeq \mathit{``W}^{\mathit{k}}(\mathfrak{g},\mathit{f}_{\mathrm{reg}})\operatorname{\mathsf{-Mod}}\mathit{''}.$$

Whittaker models

Let $f \in \mathfrak{g}$ nilpotent and consider the finite W-algebra $U(\mathfrak{g}, f)$:

$$U(\mathfrak{g},f)\simeq (U(\mathfrak{g})/\mathcal{I}_\chi)^{\mathfrak{g}_+}\simeq \operatorname{\mathsf{Hom}}_{U(\mathfrak{g})}(U(\mathfrak{g})/\mathcal{I}_\chi,U(\mathfrak{g})/\mathcal{I}_\chi),$$

where $\mathcal{I}_{\chi} = \langle a - \chi(a) \mid a \in \mathfrak{g}_{+} \rangle$.

 $U(\mathfrak{g},f)$ acts on the (twisted) invariants $M^{G_+,\chi}$ of a \mathfrak{g} -module M

 \longrightarrow Skryabin's equivalence: $U(\mathfrak{g})$ -Mod^{G_+,χ} $\stackrel{\sim}{\longrightarrow}$ $U(\mathfrak{g},f)$ -Mod.

 \bullet In the affine setting, definition more subtle [Gaitsgory et al.], but for regular nilpotent $f_{\rm reg}$, we have an equivalence [Raskin'16]

$$\mathsf{Whit}_{\mathrm{reg}}(V^k(\mathfrak{g})\operatorname{\mathsf{-Mod}}) \simeq \text{``}W^k(\mathfrak{g},f_{\mathrm{reg}})\operatorname{\mathsf{-Mod}}\text{''}.$$

• Similarly for local fields $(\mathbb{F} = \mathbb{Q}_p \text{ or } \mathbb{Z}_p((z)))$, they are used to study $G(\mathbb{F})$ -modules (take $\text{Fun}(G(\mathbb{F}))$ rather than $U(\mathfrak{g}(\mathbb{F}))$).

In particular, Whittaker models $\mathsf{Whit}_{reg}(\mathsf{Fun}(\mathrm{SL}_n(\mathbb{F}))) := \mathcal{W}_{\mathbb{O}_n} \simeq \mathcal{I}^n(\mathbb{C})$ can be generalized to \mathbb{O}_{λ} , $\lambda \in \mathcal{P}(n)$ and [Gomez-Gourevitch-Sahi'17]

$$W_{\mathbb{O}_{\lambda}} \simeq \mathcal{I}^{\lambda_1} \dots \mathcal{I}^{\lambda_\ell}(\mathbb{C}).$$

Works in that direction for finite W-algebras too [Morgan'14, Genra-Juillard'23].

Conjecture and webs of W-algebras

Conjecture

Si
$$\lambda = (\lambda_1, \dots, \lambda_\ell) \in \mathcal{P}(n)$$
, $W^k(\mathfrak{sl}_n, f_\lambda) \simeq H_{\lambda_1} H_{\lambda_2} \dots H_{\lambda_\ell} \left(V^k(\mathfrak{sl}_n)\right)$.

Proved for $N \leqslant 5$ [Creutzig-F.-Linshaw-Nakatsuka'24].

Conjecture and webs of W-algebras

Conjecture

Si
$$\lambda = (\lambda_1, \dots, \lambda_\ell) \in \mathcal{P}(n)$$
, $W^k(\mathfrak{sl}_n, f_\lambda) \simeq H_{\lambda_1} H_{\lambda_2} \dots H_{\lambda_\ell} \left(V^k(\mathfrak{sl}_n)\right)$.

Proved for $N \leqslant 5$ [Creutzig-F.-Linshaw-Nakatsuka'24].

Conjecture supported by Yang-Mills theories:

Vertex algebras can be obtained from higher-dimensional gauge theories along 2D boundaries. In particular, gluing certain 4D Yang-Mills theories with 3D+2D boundaries, we can obtain W-algebras [Gaiotto-Rapčák'18].

[Procházka-Rapčák'18] obtained more W-algebras, starting with webs of interfaces.

W-algebras [Feigin-Frenkel,'90 & Kac-Roan-Wakimoto,'03]

Let $\mathcal N$ be the set of nilpotent elements in \mathfrak{sl}_n . It is a finite union of disjoint orbits $\mathbb O_f:=\mathrm{SL}_n.f$ $(f\in\mathcal N)$ parameterized by the poset $\mathcal P(n)$:

To each orbit \mathbb{O}_{λ} corresponds an (affine) W-algebra obtained from $V^k(\mathfrak{sl}_n)$ by the BRST reduction:

$$W^k(\mathfrak{sl}_n,\mathbb{O}_\lambda)=H^0_\lambda(V^k(\mathfrak{sl}_n)).$$

$$V^k(\mathfrak{sl}_n) \xrightarrow{\operatorname{\mathsf{Zhu}}} U(\mathfrak{sl}_n) \xrightarrow{\operatorname{\mathsf{gr}}} \mathbb{C}[\mathfrak{sl}_n] \ \downarrow (-/\mathcal{I}_\chi)^{(\mathfrak{sl}_n)_+} \ \downarrow //_\chi(\operatorname{SL}_n)_+ \ W^k(\mathfrak{sl}_n,\mathbb{O}_\lambda) o U(\mathfrak{sl}_n,f_\lambda) \longrightarrow \mathbb{C}[\mathcal{S}_{f_\lambda}]$$

where $S_f = f + (\mathfrak{sl}_n)^e$ is the Slodowy slice of f.

Example: $V^k(\mathfrak{sl}_2)$ and Vir^{c_k}

For $V^k(\mathfrak{sl}_2)$, gauge condition by setting e(z) to be a constant. Implemented by constructing a BRST differential $(d=:(e(z)+1)\varphi(z):)$ and computing its cohomology.

The result is the Virasoro vertex algebra ${\rm Vir}^{c_k}$, strongly generated by the field $L(z)=\sum_{n\in\mathbb{Z}}L_nz^{-n-2}$ satisfying the commutation relations

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\partial_{m+n,0}c_k,$$

where c_k is the central charge.

Example: $V^k(\mathfrak{sl}_2)$ and Vir^{c_k}

For $V^k(\mathfrak{sl}_2)$, gauge condition by setting e(z) to be a constant. Implemented by constructing a BRST differential $(d=:(e(z)+1)\varphi(z):)$ and computing its cohomology.

The result is the Virasoro vertex algebra ${\rm Vir}^{c_k}$, strongly generated by the field $L(z)=\sum_{n\in\mathbb{Z}}L_nz^{-n-2}$ satisfying the commutation relations

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\partial_{m+n,0}c_k,$$

where c_k is the central charge.

$$V^{k}(\mathfrak{sl}_{2}) \longrightarrow U(\mathfrak{sl}_{2}) \longrightarrow \mathbb{C}[\mathfrak{sl}_{2}]$$

$$\downarrow \qquad \qquad \downarrow (-/\mathcal{I}_{\chi})^{\mathfrak{n}_{+}} \qquad \downarrow //_{\chi} N_{+}$$

$$Vir^{c_{k}} \longrightarrow Z(\mathfrak{sl}_{2}) \simeq \mathbb{C}[c] \longrightarrow \mathbb{C}[x]$$

Reduction of the affine subalgebra [Creutzig-F.-Linshaw-Nakatsuka'24]

Example with
$$\mathfrak{sl}_4$$
: \longrightarrow \longrightarrow

For almost all $k \in \mathbb{C}$, we have conformal embeddings

$$\begin{split} \langle \textbf{\textit{L}}, \textbf{\textit{W}}_{3} \rangle \otimes \textbf{\textit{V}}^{k+1}(\mathfrak{sl}_{2}) \otimes \mathcal{H} \hookrightarrow \textbf{\textit{W}}^{k}(\mathfrak{sl}_{4}, \mathbb{O}_{\{2,1^{2}\}}) \\ \langle \textbf{\textit{L}}, \textbf{\textit{W}}_{3} \rangle \otimes \operatorname{Vir}^{c_{k+1}} \otimes \mathcal{H} \hookrightarrow \textbf{\textit{W}}^{k}(\mathfrak{sl}_{4}, \mathbb{O}_{\{2,2\}}), \end{split}$$

where
$$\langle L, W_3 \rangle \simeq \langle L, W_3 \rangle \simeq \operatorname{Com} \left(V^{k+1}(\mathfrak{gl}_2), W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,1^2\}}) \right)$$
 when $k \notin \mathbb{Q}$.

Apply H_2^0 to the affine part of $W^k(\mathfrak{sl}_4,\mathbb{O}_{\{2,1^2\}})$ gives

$$H^0_2(W^k(\mathfrak{sl}_4,\mathbb{O}_{\{2,1^2\}}))\simeq W^k(\mathfrak{sl}_4,\mathbb{O}_{\{2,2\}}).$$

Reduction of the affine subalgebra [Creutzig-F.-Linshaw-Nakatsuka'24]

Example with
$$\mathfrak{sl}_4$$
: \longrightarrow \longrightarrow

For almost all $k \in \mathbb{C}$, we have conformal embeddings

$$\begin{split} \langle \textbf{\textit{L}}, \textbf{\textit{W}}_{3} \rangle \otimes \textbf{\textit{V}}^{k+1}(\mathfrak{sl}_{2}) \otimes \mathcal{H} \hookrightarrow \textbf{\textit{W}}^{k}(\mathfrak{sl}_{4}, \mathbb{O}_{\{2,1^{2}\}}) \\ \langle \textbf{\textit{L}}, \textbf{\textit{W}}_{3} \rangle \otimes \operatorname{Vir}^{c_{k+1}} \otimes \mathcal{H} \hookrightarrow \textbf{\textit{W}}^{k}(\mathfrak{sl}_{4}, \mathbb{O}_{\{2,2\}}), \end{split}$$

where $\langle L, W_3 \rangle \simeq \langle L, W_3 \rangle \simeq \text{Com} \left(V^{k+1}(\mathfrak{gl}_2), W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,12\}}) \right)$ when $k \notin \mathbb{Q}$.

Apply H_2^0 to the affine part of $W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,1^2\}})$ gives

$$H_2^0(W^k(\mathfrak{sl}_4,\mathbb{O}_{\{2,1^2\}})) \simeq W^k(\mathfrak{sl}_4,\mathbb{O}_{\{2,2\}}).$$

Works similarly with \mathfrak{sl}_5 : \longrightarrow and \longrightarrow \longrightarrow

$$H_2^0(W^k(\mathfrak{sl}_5,\mathbb{O}_{\{3,1^2\}})) \simeq W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2,3\}})$$

$$H^0_{\{2,1\}}(W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2,1^3\}}))\simeq W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2^2,1\}}).$$

Structure of W-algebras

Conjecture [CFLN'24]

Let $\lambda = \{\lambda_1, \dots, \lambda_{\ell-1}, \frac{\lambda_{\ell}}{\ell}\} \in \mathcal{P}(n)$, then there is a conformal embedding

$$\mathsf{Com}\left(W^k\left(\begin{array}{c} \\ \\ \\ \end{array}\right)\right)\otimes W^{k^\sharp}\left(\begin{array}{c} \\ \\ \end{array}\right)\otimes \mathcal{H} \hookrightarrow W^k\left(\begin{array}{c} \\ \\ \end{array}\right)$$

Iterating, we get that W-algebras decompose as product of affine cosets

$$\mathsf{Com}\left(V^{k^{\sharp}}(\mathfrak{gl}_m), W^k(\mathfrak{sl}_n, f_{\{n-m,1^m\}})\right).$$

Surprisingly, affine cosets are all obtain as quotients of the same W_{∞} -algebra $W(2,3,\ldots,)$ [Linshaw'21], which is conjecturally isomorphic to the affine Yangian of $\mathfrak{gl}_1\simeq\mathbb{C}$.

Hamiltonian reductions and representations

Recall: $\mathbb{Z}_{\geqslant 0}$ -graded $V^k(\mathfrak{sl}_n)$ -modules are the same as modules of $U(\mathfrak{sl}_n)$.

Rep. theory of the simple quotient $V_k(\mathfrak{sl}_n)$ of $V^k(\mathfrak{sl}_n)$ is more complicated.

When $k \in \mathbb{Z}_{\geqslant 0}$, $V_k(\mathfrak{sl}_n)$ is rational: category of hw modules is finite and semisimple, simple objects are the integrable rep. [Frenkel-Zhu'92].

They generate a modular tensor category [Huang'08].

Hamiltonian reductions and representations

Recall: $\mathbb{Z}_{\geq 0}$ -graded $V^k(\mathfrak{sl}_n)$ -modules are the same as modules of $U(\mathfrak{sl}_n)$.

Rep. theory of the simple quotient $V_k(\mathfrak{sl}_n)$ of $V^k(\mathfrak{sl}_n)$ is more complicated.

When $k \in \mathbb{Z}_{\geq 0}$, $V_k(\mathfrak{sl}_n)$ is rational: category of hw modules is finite and semisimple, simple objects are the integrable rep. [Frenkel-Zhu'92].

They generate a modular tensor category [Huang'08].

Ex: for
$$V_k(\mathfrak{sl}_2)$$
, $\{\mathcal{L}_k(\lambda), \lambda \in \llbracket 0, k \rrbracket \}$

 ϖ_1

 ϖ_1

 ϖ_1

 $2\varpi_1$

2001

 ϖ_1

0

Fusion rules:

Hamiltonian reductions and representations

Recall: $\mathbb{Z}_{\geqslant 0}$ -graded $V^k(\mathfrak{sl}_n)$ -modules are the same as modules of $U(\mathfrak{sl}_n)$.

Rep. theory of the simple quotient $V_k(\mathfrak{sl}_n)$ of $V^k(\mathfrak{sl}_n)$ is more complicated.

When $k \in \mathbb{Z}_{\geqslant 0}$, $V_k(\mathfrak{sl}_n)$ is rational: category of hw modules is finite and semisimple, simple objects are the integrable rep. [Frenkel-Zhu'92].

They generate a modular tensor category [Huang'08].

Ex: for
$$V_k(\mathfrak{sl}_2)$$
, $\{\mathcal{L}_k(\lambda), \lambda \in \llbracket 0, k \rrbracket \}$

Fusion rules:

When k is admissible (i.e. k+n=p/q, $p\geqslant n$, $q\geqslant 1$) not in \mathbb{Z} : Simple hw $V_k(\mathfrak{sl}_n)$ -modules are admissible rep. They still satisfy modularity properties [Kac-Wakimoto'88] but they are not stable under fusion product.

 \leadsto modularity explained by rationality of the simple W-algebra $W_k(\mathfrak{sl}_n, \mathbb{O}_{\{q^s,r\}})$.

Relaxed modules

For k=-n+p/q admissible, $W_k(\mathfrak{sl}_n,\mathbb{O}_{\{q^s,r\}})$ is rational [Arakawa-van Ekeren'19] and $H^0_\lambda:V_k(\mathfrak{sl}_n)$ -Mod $\to W_k(\mathfrak{sl}_n,\mathbb{O}_\lambda)$ -Mod is a surjective functor that maps irreducible on irreducible (or 0).

However, it is not injective so we need to start with a bigger category of modules in $V_k(\mathfrak{sl}_n)$.

 \sim Relaxed modules [Feigin-Semikhatov-Tipunin'98]: it is not required to have a vector annihilated by root vectors of the Lie algebra of zero modes ($\simeq \mathfrak{sl}_n$) in the top space.

Relaxed modules

For k=-n+p/q admissible, $W_k(\mathfrak{sl}_n,\mathbb{O}_{\{q^s,r\}})$ is rational [Arakawa-van Ekeren'19] and $H^0_\lambda:V_k(\mathfrak{sl}_n)$ -Mod $\to W_k(\mathfrak{sl}_n,\mathbb{O}_\lambda)$ -Mod is a surjective functor that maps irreducible on irreducible (or 0).

However, it is not injective so we need to start with a bigger category of modules in $V_k(\mathfrak{sl}_n)$.

 \sim Relaxed modules [Feigin-Semikhatov-Tipunin'98]: it is not required to have a vector annihilated by root vectors of the Lie algebra of zero modes ($\simeq \mathfrak{sl}_n$) in the top space.

Ex: for
$$V_k(\mathfrak{sl}_2)$$
, $k = -2 + \frac{p}{q}$, $(p, q \geqslant 2)$

$$\mathcal{E}_k(\lambda)$$

[Creutzig-Ridout'13, Kawasetsu-Ridout'19]: relaxed $V_k(\mathfrak{sl}_2)$ -modules generate a modular tensor category.

Inverse Hamiltonian reduction

$$\operatorname{ch}[\mathcal{E}_k(\lambda)](z;q) = \sum z^{h_0} q^{L_0} \dim[\mathcal{E}_k(\lambda)]_{h_0,L_0} = z^{\lambda} \frac{\operatorname{ch}[\mathcal{L}_{c_k}(\Delta_{\lambda,k})](q)}{\eta(q)^2} \delta(z^{\alpha}),$$

where $\mathcal{L}_{c_k}(\Delta_{\lambda,k})$ is a Virasoro minimal model [Kawasetsu-Ridout'19].

For $c_k = c_{p,q} = 1 - 6\frac{(p-q)^2}{pq}$, Vir_{c_k} is rational [Wang'93]. Its irred. $\mathbb{Z}_{\geqslant 0}$ -graded rep. are exactly the Virasoro minimal models $\{\mathcal{L}_{c_k}(\Delta_{\lambda,k})\}$.

Inverse Hamiltonian reduction

$$\operatorname{ch}[\mathcal{E}_k(\lambda)](z;q) = \sum z^{h_0} q^{L_0} \dim[\mathcal{E}_k(\lambda)]_{h_0,L_0} = z^{\lambda} \frac{\operatorname{ch}[\mathcal{L}_{c_k}(\Delta_{\lambda,k})](q)}{\eta(q)^2} \delta(z^{\alpha}),$$

where $\mathcal{L}_{c_k}(\Delta_{\lambda,k})$ is a Virasoro minimal model [Kawasetsu-Ridout'19].

For $c_k = c_{p,q} = 1 - 6 \frac{(p-q)^2}{pq}$, Vir_{c_k} is rational [Wang'93]. Its irred. $\mathbb{Z}_{\geqslant 0}$ -graded rep. are exactly the Virasoro minimal models $\{\mathcal{L}_{c_k}(\Delta_{\lambda,k})\}$.

There is a conformal embedding [Semikhatov'94]

$$V^{k}(\mathfrak{sl}_{2})\hookrightarrow \mathrm{Vir}^{c_{k}}\otimes \Pi_{\mathbb{Z}}$$

$$e(z)\mapsto e^c(z),\quad h(z)\mapsto \frac{k}{2}c(z)+d(z),\quad f(z)\mapsto (k+2):L(z)e^{-c}(z):+\ldots$$

preserved by taking simple quotients for $k=-2+\frac{p}{q}\notin\mathbb{Z}$ admissible [Adamović'17].

Relaxed $V_k(\mathfrak{sl}_2)$ -modules are reconstructed from $\mathcal{L}_{c_k}(\Delta_{\lambda,k})$:

$$\mathcal{E}_k(\lambda) \simeq \mathcal{L}_{c_k}(\Delta_{\lambda,k}) \otimes \Pi[\lambda], \qquad [\lambda] \in \mathbb{C}/\mathbb{Z}.$$

In particular, modularity of relaxed $V_k(\mathfrak{sl}_2)$ -modules is deduced from modularity of Virasoro minimal models.

More modularity & inverse reductions

Using explicit embeddings, modularity of relaxed modules has been checked for k=-3+p/q admissible:

- [Fehily-Ridout'22]: $W_k(\mathfrak{sl}_3, f_{\min})$, $q \geqslant 3$ i.e. $W_k(\mathfrak{sl}_3, f_{\mathrm{reg}})$ rational,
- ullet [F.-Raymond-Ridout'24]: $V^k(\mathfrak{sl}_3)$, q=2 i.e. $W_k(\mathfrak{sl}_3,f_{\min})$ rational, using

$$V^k(\mathfrak{sl}_3)\hookrightarrow W^k(\mathfrak{sl}_3,\mathbb{O}_{\mathrm{sub}})\otimes eta\gamma\otimes \Pi_{\mathbb{Z}}$$
 [Adamović-Creutzig-Genra'22].

Generalizing inverse Hamiltonian reductions

Nilpotent orbits of \mathfrak{sl}_n are partially ordered:

Idea: If $\mathbb{O}_{\lambda} \leqslant \mathbb{O}_{\lambda'}$ (+ conditions) then

$$W^k(\mathfrak{sl}_n,\mathbb{O}_\lambda) \hookrightarrow W^k(\mathfrak{sl}_n,\mathbb{O}_{\lambda'}) \otimes \text{free fields}.$$

Generalizing inverse Hamiltonian reductions

Nilpotent orbits of \mathfrak{sl}_n are partially ordered:

Idea: If $\mathbb{O}_{\lambda} \leqslant \mathbb{O}_{\lambda'}$ (+ conditions) then

$$W^k(\mathfrak{sl}_n,\mathbb{O}_\lambda) \hookrightarrow W^k(\mathfrak{sl}_n,\mathbb{O}_{\lambda'}) \otimes \text{free fields}.$$

Theorem [Fehily'23]

IHR between hook-type partitions. For $m' \leqslant m \leqslant n$,

$$W^{^{k}}(\mathfrak{sl}_{^{n}},\mathbb{O}_{\{m',1^{n-m'}\}})\hookrightarrow W^{^{k}}(\mathfrak{sl}_{^{n}},\mathbb{O}_{\{m,1^{n-m}\}})\otimes V$$

where $V = \beta \gamma^{\otimes a} \otimes \Pi_{\mathbb{Z}}^{\otimes b}$.

Inverting the partial reduction

Example with
$$\mathfrak{sl}_4$$
: \longleftarrow \longleftarrow

For almost all $k \in \mathbb{C}$, we have conformal embeddings

$$\begin{split} \langle L, W_3 \rangle \otimes V^{k+1}(\mathfrak{sl}_2) \otimes \mathcal{H} \hookrightarrow W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,1^2\}}) \\ \langle L, W_3 \rangle \otimes \mathrm{Vir}^{c_{k+1}} \otimes \mathcal{H} \hookrightarrow W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,2\}}), \end{split}$$

Extend
$$V^{k+1}(\mathfrak{sl}_2) \hookrightarrow \mathrm{Vir}^{c_{k+1}} \otimes \Pi_{\mathbb{Z}}$$
 gives
$$W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,1^2\}}) \hookrightarrow W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,2\}}) \otimes \Pi_{\mathbb{Z}}.$$

Similarly with
$$\mathfrak{sl}_5$$
: \longrightarrow and \longrightarrow \longleftarrow \longrightarrow \longrightarrow $W^k(\mathfrak{sl}_5,\mathbb{O}_{\{3,1^2\}})\hookrightarrow W^k(\mathfrak{sl}_5,\mathbb{O}_{\{3,2\}})\otimes\Pi_{\mathbb{Z}}.$ $W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2,1^3\}})\hookrightarrow W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2^2,1\}})\otimes\beta\gamma\otimes\Pi_{\mathbb{Z}}.$

Inverting the partial reduction

Example with \mathfrak{sl}_4 : \longleftarrow \longleftarrow

For almost all $k \in \mathbb{C}$, we have conformal embeddings

$$\begin{split} \langle L, W_3 \rangle \otimes V^{k+1}(\mathfrak{sl}_2) \otimes \mathcal{H} \hookrightarrow W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,1^2\}}) \\ \langle L, W_3 \rangle \otimes \operatorname{Vir}^{c_{k+1}} \otimes \mathcal{H} \hookrightarrow W^k(\mathfrak{sl}_4, \mathbb{O}_{\{2,2\}}), \end{split}$$

Extend $V^{k+1}(\mathfrak{sl}_2) \hookrightarrow \mathrm{Vir}^{c_{k+1}} \otimes \Pi_{\mathbb{Z}}$ gives

$$\textit{W}^{\textit{k}}(\mathfrak{sl}_{4},\mathbb{O}_{\{2,1^{2}\}}) \hookrightarrow \textit{W}^{\textit{k}}(\mathfrak{sl}_{4},\mathbb{O}_{\{2,2\}}) \otimes \Pi_{\mathbb{Z}}.$$

Similarly with
$$\mathfrak{sl}_5$$
: \longrightarrow and \longrightarrow \longrightarrow \longrightarrow \longrightarrow $W^k(\mathfrak{sl}_5,\mathbb{O}_{\{3,1^2\}})\hookrightarrow W^k(\mathfrak{sl}_5,\mathbb{O}_{\{3,2\}})\otimes\Pi_{\mathbb{Z}}.$ $W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2,1^3\}})\hookrightarrow W^k(\mathfrak{sl}_5,\mathbb{O}_{\{2^2,1\}})\otimes\beta\gamma\otimes\Pi_{\mathbb{Z}}.$

Conjecture

For $\lambda = \{\lambda_1 \geqslant \ldots \geqslant \lambda_\ell\} \in \mathcal{P}(n)$. There is a conformal embedding

$$W^k(\mathfrak{sl}_n, \mathbb{O}_{\{\lambda_1, \dots, \lambda_n, 1^m\}}) \hookrightarrow W^k(\mathfrak{sl}_n, \mathbb{O}_{\{\lambda_1, \dots, \lambda_n+1, 1^{m-1}\}}) \otimes \Pi_{\mathbb{Z}} \otimes \beta \gamma^{\otimes (m-2)}$$

General pattern & Rationality

Partial/inverse reductions provide paths to connect $V_k(\mathfrak{sl}_n)$ to rational W-algebras.

Actually, we have more connections of W-algebras coming from nilpotent orbit closures relation [Beem-Buston-Nair, Genra-Juillard, F.-Fehily-Fursman-Nakatsuka, works in progress].

More partial/inverse reductions [F.-Fehily-Fursman-Nakatsuka]

- →: reduction of affine subalgebra.
- \rightarrow : reduction of a natural representation for the affine subalgebra.

Ex: $W^k(\mathfrak{sl}_3, f_{\mathrm{sub}})$ is strongly generated by fields H, L, G^+, G^- .

 $G^+ \text{ gen. a 1-dim natural rep. of } H \rightsquigarrow H^0_2(W^k(\mathfrak{sl}_3,f_{\mathrm{sub}})) \simeq W^k(\mathfrak{sl}_3,f_{\mathrm{reg}}).$

Relaxed modules for $V_k(\mathfrak{sl}_3)$

$$V_k(\mathfrak{sl}_3) \hookrightarrow W_k(\mathfrak{sl}_3, \mathbb{O}_{\mathrm{sub}}) \otimes \beta \gamma \otimes \Pi_{\mathbb{Z}}$$

For q=2, i.e. $k=-3+\frac{p}{2}$ with $p=3,5,\ldots$, $\mathcal{W}_k(\mathfrak{sl}_3,\mathbb{O}_{\mathrm{sub}})$ is rational.

	$W_k(\mathfrak{sl}_3,f_{\mathrm{sub}})$	$eta\gamma$	П
	hw mod	hw mod	relaxed mod
$\widehat{\mathcal{S}}_{\lambda,[u]}$	$H_{f_{\text{sub}}}^0(L(\widehat{\lambda})) \ (\lambda \in \mathbb{P}^{u-3}_+)$	\mathcal{V}	$\Pi_{[\nu]}$ ($[\nu] \in \mathbb{C}/\mathbb{Z}$)
	hw mod	relaxed mod	relaxed mod
$\widehat{\mathcal{R}}_{\lambda,[\mu, u]}$	$H_{f_{\mathrm{sub}}}^{0}(L(\widehat{\lambda})) \ (\lambda \in \mathbb{P}_{+}^{u-3})$	$\mathcal{W}_{[\mu]}$ ([μ] $\in \mathbb{C}/\mathbb{Z}\setminus\{[0]\}$)	$\Pi_{[\nu]}$ ($[\nu] \in \mathbb{C}/\mathbb{Z}$)

$k = -3 + \frac{p}{q}$ with $q \geqslant 3$

$W_k(\mathfrak{sl}_3,\mathbb{O}_{\mathrm{sub}})$	$eta\gamma$	$\Pi_{\mathbb{Z}}$
hw mod	hw mod	rel mod
$H^0_{f_{\mathrm{sub}}}ig(L(\widehat{\lambda})ig)$ $(\lambda\in\mathrm{P}^{u-3}_+)$	\mathcal{V}	$\Pi_{[\nu]}$ ($[\nu] \in \mathbb{C}/\mathbb{Z}$)
hw mod	rel mod	rel mod
$H_{f_{\mathrm{sub}}}^{0}(L(\widehat{\lambda})) \ (\lambda \in \mathbb{P}_{+}^{u-3})$	$\mathcal{W}_{[\mu]}$ ([μ] $\in \mathbb{C}/\mathbb{Z}\setminus\{[0]\}$)	$\Pi_{[\nu]}$ ($[\nu] \in \mathbb{C}/\mathbb{Z}$)
rel mod		

